
 1 BANano – Essentials 

B4X Booklets 
 

 

 

 

 

 
 

 

 

BANano – Essentials 
Creating lightweight and blistering fast Web Apps/PWAs with B4J! 

 

 
 

 

 

 

 

 

 

 

 

 

Written by Alain Bailleul                            Edition 1.01 

 

Last update:  2022.04.08 

 

 

 



 2 BANano – Essentials 

 

Table of Contents 

1 GETTING STARTED WITH B4J AND BANANO .......................................................................... 7 

1.1 BANANO LICENSE ................................................................................................................................................... 8 

1.2 INSTALLING BANANO .......................................................................................................................................... 10 

1.3 SETTING UP CHROME WITH A WEBSERVER ....................................................................................................... 11 

2 MY FIRST BANANO PROJECT .................................................................................................. 14 

2.1 LOOKING INTO THE BANANO LAYOUT FILES .................................................................................................... 18 

2.2 A FIRST LOOK AT THE SOURCE CODE AND STRUCTURE OF A BANANO APP ................................................. 22 

3 SUPPORT OF THE B4J LANGUAGE .......................................................................................... 24 

4 THE WEB CONNECTION ........................................................................................................... 26 

5 BANANOOBJECT: THE JACK-OF-ALL-TRADES ....................................................................... 29 

6 BANANOELEMENT: TALKING TO THE DOM........................................................................... 35 

6.1 INTRODUCTION ..................................................................................................................................................... 35 

6.2 USING HTML TAGS, WITH STYLE!....................................................................................................................... 36 

6.2.1 Getting existing tags ................................................................................................................................... 36 

6.2.2 Creating new tags ........................................................................................................................................ 37 

6.2.3 Adding the tags to the DOM .................................................................................................................... 38 

6.2.4 Removing Tags (or only its children) ..................................................................................................... 39 

6.2.5 Looping through a multi-tag BANanoElement .................................................................................. 41 

6.2.6 Styling Tags .................................................................................................................................................... 41 

6.2.7 BANanoEvent: Working with Events ...................................................................................................... 42 

6.2.8 Adding Events ................................................................................................................................................ 42 

6.2.9 Removing Events .......................................................................................................................................... 44 

6.3 LOADING ABSTRACT DESIGNER LAYOUTS ......................................................................................................... 45 

7 BANANOPROMISE: GETTING AN ANSWER IN THE FUTURE ................................................ 47 

7.1 MAKING A PROMISE ............................................................................................................................................. 47 

7.1.1 The structure of a promise ........................................................................................................................ 47 

7.1.2 Breaking the code down ............................................................................................................................ 48 

7.1.3 The .Then() can also be a .ThenWait() and the .Else() be a .ElseWait(). ..................................... 48 

7.1.4 What is such a 'task'? ................................................................................................................................. 49 

7.2 THAT WAS THE LONG STORY. BUT BANANO.AWAIT! THIS CAN BE SIMPLER… ............................................ 50 

7.2.1 BANAno.Await to the rescue .................................................................................................................... 50 

7.2.2 Wait a minute: isn't that just B4Js Wait For? ..................................................................................... 51 

7.3 THEN WHY DO THESE DIFFERENT SYSTEMS EXIST? ............................................................................................ 52 

8 BANANOFETCH: MAKING REQUESTS TO THE SERVER ......................................................... 53 

8.1 GET ........................................................................................................................................................................ 53 

8.2 HANDLING THE BANANOFETCHRESPONSE ...................................................................................................... 54 

8.3 POST/PUT/DELETE/… (USING BANANOFETCHOPTIONS) .......................................................................... 55 

8.4 SHORTCUT METHODS ........................................................................................................................................... 56 

9 THE BANANO OBJECT: ONE OBJECT TO RULE THEM ALL! ................................................... 57 

9.1 USING BANANO IN APPSTART........................................................................................................................... 57 

9.1.1 TranspilerOptions ......................................................................................................................................... 59 

9.1.2 BANanoHeader ............................................................................................................................................. 62 

9.1.2.1 Loading external CSS and JavaScript files ................................................................................ 62 



 3 BANano – Essentials 

 

9.1.2.2 Loading assets… Later ...................................................................................................................... 63 

9.1.2.3 Loading modern ES6 modules ...................................................................................................... 64 

9.1.2.4 Loading JavaScript files in the Service Worker of the PWA ............................................... 66 

9.1.2.5 PWA Specific Assets .......................................................................................................................... 67 

9.1.3 Transpiling and Building ........................................................................................................................... 68 

9.1.3.1 Building a PWA ................................................................................................................................... 68 

9.1.3.2 Building a BANanoLibrary ............................................................................................................... 70 

9.1.3.3 Building a BANanoServer Websocket project ......................................................................... 71 

9.1.3.4 Building a BANanoLibrary for ABMaterial ................................................................................ 71 

9.1.3.5 Tree Shaking (removing dead code) ........................................................................................... 72 

9.2 USING BANANO IN THE WEBAPP CODE ........................................................................................................... 73 

9.2.1 BANano Extended Property Objects ...................................................................................................... 73 

10 SAVING DATA IN THE BROWSER ............................................................................................ 75 

10.1 COOKIES ................................................................................................................................................................. 75 

10.2 LOCALSTORAGE AND SESSIONSTORAGE ........................................................................................................... 76 

10.3 CACHESTORAGE (BANANO V7.35+) ................................................................................................................ 78 

10.4 BANANOSQL ....................................................................................................................................................... 79 

10.4.1 Creating the Database........................................................................................................................... 79 

10.4.2 INSERT new data ..................................................................................................................................... 80 

10.4.3 UPDATE existing data ............................................................................................................................ 80 

10.4.4 DELETE data .............................................................................................................................................. 80 

10.4.5 SELECT data............................................................................................................................................... 81 

10.4.6 Additional Remarks ................................................................................................................................ 81 

11 COMPONENTS FOR THE ABSTRACT LAYOUT DESIGNER ..................................................... 83 

11.1 CREATING A COMPONENT................................................................................................................................... 83 

11.1.1 Multi-line Designer property names ................................................................................................. 85 

11.2 A NOTE ON EXTRA ASSETS .................................................................................................................................. 86 

12 BANANO LIBRARIES ................................................................................................................. 87 

13 INTRODUCING BANANOSERVER ............................................................................................ 89 

13.1 WHAT IS BANANOSERVER? ................................................................................................................................ 90 

13.2 CREATING A B4J APP USING THE BANANOSERVER LIBRARY ......................................................................... 91 

13.2.1 REST API BANanoServer ....................................................................................................................... 91 

13.2.2 WebSockets BANanoServer .................................................................................................................. 93 

13.3 A REST API EXAMPLE ......................................................................................................................................... 94 

13.3.1 BROWSER side: PWA .............................................................................................................................. 94 

13.3.2 SERVER side ............................................................................................................................................... 96 

13.4 A WEBSOCKETS EXAMPLE ................................................................................................................................. 101 

13.4.1 BROWSER side: PWA ............................................................................................................................ 103 

13.4.2 SERVER side ............................................................................................................................................. 107 

14 BACKGROUND WORKERS ..................................................................................................... 110 

15 CRON: AN ADVANCED TIMER .............................................................................................. 114 

16 BANANOROUTER: MULTI PAGE PWA .................................................................................. 116 

16.1 WHAT IS A JAVASCRIPT ROUTER? ..................................................................................................................... 116 

16.2 SETUP UP THE ROUTES ....................................................................................................................................... 118 

16.3 NAVIGATING BETWEEN PAGES........................................................................................................................... 119 

16.4 REMOVING  A ROUTE .......................................................................................................................................... 119 



 4 BANano – Essentials 

 

17 DEBUGGING ............................................................................................................................ 120 

17.1 LIVE CODE SWAPPING ........................................................................................................................................ 120 

17.2 MAKING USE OF THE NEW B4J 'JUMP' FEATURE IN THE LOGS ...................................................................... 120 

17.3 JAVASCRIPT BREAKPOINTS ................................................................................................................................ 121 

17.4 USING THE BROWSER DEVELOPER TOOLS ....................................................................................................... 121 

17.4.1 The Console Tab .................................................................................................................................... 122 

17.4.2 The Network Tab ................................................................................................................................... 124 

17.4.3 The Application Tab.............................................................................................................................. 127 

17.4.4 The Security Tab .................................................................................................................................... 129 

17.4.5 The Lighthouse Tab .............................................................................................................................. 130 

17.4.6 Testing your PWA on emulated device sizes ................................................................................ 132 

18 BANANOSKELETON: UI COMPONENT LIBRARY ................................................................. 133 

18.1 ADDING UI COMPONENTS TO YOUR WEB APP ............................................................................................... 133 

18.2 THE GRID SYSTEM .............................................................................................................................................. 135 

18.3 STYLING ................................................................................................................................................................ 136 

18.4 THE COMPONENTS ............................................................................................................................................. 137 

18.5 SKTOOLS METHODS ........................................................................................................................................... 139 

19 TROUBLESHOOTING .............................................................................................................. 145 

19.1 COMPONENT DOES NOT UPDATE IN CODE ...................................................................................................... 145 

19.2 WEB APP DOESN'T UPDATE AFTER RECOMPILING ........................................................................................... 145 

19.3 BROWSER LOG SHOWS TRANSPILING ERROR .................................................................................................. 146 

20 (ADVANCED) TIPS & TRICKS ................................................................................................ 147 

20.1 A BANANOFETCH WITH A TIMEOUT ................................................................................................................ 147 

20.2 CROPPING AN IMAGE BEFORE UPLOAD ............................................................................................................ 149 

20.3 GETTING NON-STANDARD ATTRIBUTES ........................................................................................................... 149 

20.4 [BANRAW] AND [BANCLEAN] IN SMARTSTRINGS .................................................................................... 150 

20.5 CHECK IF AN OBJECT HAS A CERTAIN FUNCTION AND EXECUTE IT ................................................................ 151 

20.6 GETTING THE TRANSPILED CLASS NAME AND USE IT ...................................................................................... 151 

21 QUICK REFERENCE ................................................................................................................. 152 

21.1 BANANO ............................................................................................................................................................. 152 

21.2 BANANOCACHEREPORT ................................................................................................................................... 177 

21.3 BANANOCONSOLE ............................................................................................................................................ 178 

21.4 BANANOELEMENT ............................................................................................................................................. 180 

21.5 BANANOEVENT .................................................................................................................................................. 188 

21.6 BANANOFETCH .................................................................................................................................................. 189 

21.7 BANANOFETCHOPTIONS .................................................................................................................................. 191 

21.8 BANANOFETCHRESPONSE ................................................................................................................................ 193 

21.9 BANANOGEOLOCATION ................................................................................................................................... 195 

21.10 BANANOGEOPOSITION ................................................................................................................................ 196 

21.11 BANANOHEADER .......................................................................................................................................... 197 

21.12 BANANOHISTORY ......................................................................................................................................... 199 

21.13 BANANOJSONGENERATOR (DEPRECIATED) ........................................................................................ 200 

21.14 BANANOJSONPARSER (DEPRECIATED) ................................................................................................ 201 

21.15 BANANOJSONQUERY ................................................................................................................................. 202 

21.16 BANANOLOCATION ...................................................................................................................................... 204 

21.17 BANANOMQTTCLIENT (DEPRECIATED) ................................................................................................ 206 

21.18 BANANOMQTTCONNECTOPTIONS (DEPRECIATED) ........................................................................... 207 



 5 BANano – Essentials 

 

21.19 BANANOMEDIAQUERY ................................................................................................................................ 208 

21.20 BANANOMUTATIONOBSERVER ................................................................................................................... 209 

21.21 BANANOMUTATIONRECORD ...................................................................................................................... 212 

21.22 BANANONAVIGATOR ................................................................................................................................... 214 

21.23 BANANOOBJECT ........................................................................................................................................... 215 

21.24 BANANOPROMISE ......................................................................................................................................... 220 

21.25 BANANOREGEX ............................................................................................................................................. 223 

21.26 BANANOROUTER .......................................................................................................................................... 224 

21.27 BANANOSQL................................................................................................................................................. 226 

21.28 BANANOSCREEN ........................................................................................................................................... 227 

21.29 BANANOTRANSPILEROPTIONS.................................................................................................................... 228 

21.30 BANANOURL................................................................................................................................................. 232 

21.31 BANANOWEBSOCKET ................................................................................................................................... 235 

21.32 BANANOWINDOW........................................................................................................................................ 238 

21.33 BANANOXMLHTTPREQUEST ...................................................................................................................... 242 

 

 

New chapters in v1.01: 

 

1.11.1. Multi-line Designer property names 

18. BANanoSkeleton: UI component library 

19. Troubleshooting 

20. (Advanced) Tips & Tricks  



 6 BANano – Essentials 

 

Main contributors:  Alain Bailleul  (Alwaysbusy) 

 

To search for a given word or sentence use the Search function in the Edit menu. 

 

Updated for following versions: 

B4J version 9.30 

 

Other B4X Booklets by Klaus Christl  (klaus), Erel Uziel  (Erel): 

B4X Getting Started 

B4X Basic Language 

B4X IDE Integrated Development Environment 

B4X Visual Designer 

B4X Help tools 

 

B4XPages Cross-platform projects 

B4X CustomViews 

B4X Graphics 

B4X XUI B4X User Interface 

B4X SQLite Database 

B4X JavaObject NativeObject 

 

B4R Example Projects 

 

You can consult these booklets online in this link [B4X] Documentation Booklets. 

Be aware that external links don't work in the online display. 

 

This booklet is a first introduction to BANano Web Apps, their structure and the special commands 

the BANano Core library has.   

 

This booklet is not a full description of all the methods in BANano: that is why it is called 

Essentials. Some things can be done in several different ways, but I will not always go 

through all the possible ways and just mention the most common (and best) ways to do 

it. 

 

Although this booklet goes in-depth on some core functionalities of BANano, I've tried to 

make is as accessible as possible for everyone. 

 

If you understand what is in this manual, you have all the building blocks you need to get 

started with creating your own Web Apps and PWAs using BANano in B4J!  

 

https://www.b4x.com/android/forum/threads/b4x-documentation-booklets.88985/#content
https://www.b4x.com/android/forum/threads/b4x-documentation-booklets.88985/


 7 BANano – Essentials 

1 Getting started with B4J and BANano 

 

B4J is a 100% free development tool for desktop, server and IoT solutions  

With B4J you can easily create desktop applications (UI), console programs (non-UI) and server 

solutions. 

B4J apps can run on Windows, Mac, Linux and ARM boards (such as Raspberry Pi). 

The compiled apps are standalone, without any external dependencies. 

 

You can see all the libraries in the Documentation page in the forum or in the B4X Libraries Google 

Sheet. 

 

BANano is a B4J library that Transpiles B4J source code to html/CSS and JavaScript. It is also 100% 

free. 

 

BANano is B4J's answer to the JavaScript frameworks like Angular, React, Vue, … including 

components, routers, etc. 

 

It supports about 99% of the normal B4J keywords and adds an additional set of keywords and 

methods to the B4J IDE, specifically focused on Web. 

 

With BANano, you can create websites/webapps with (offline) Progressive Web App support. It 

does not rely on any particular framework like Materialize CSS or Bootstrap. You will have to write 

that part yourself, but on the other hand, you have the choice to pick which one. BANano does 

include a UI library already made to get you started: BANanoSkeleton.  This manual will use this UI 

library in its examples. 

 

Additional UI or JavaScript wrappers can be written by creating BANano .b4xlib Libraries. 

 

Just like in B4J, you can use the Abstract Designer to design your views and layouts.  

 

BANano does support Live Code Swapping and does optimize your code by removing all 'Dead 

Code' (code that is not used in the final project, also known as Tree Shaking). 

 

 

  

https://www.b4x.com/learn.html
https://docs.google.com/spreadsheets/d/1qFvc3Q70RriJS3m_ywBoJvZ47gSTVAuN_X04SI0_XBw/edit#gid=0
https://docs.google.com/spreadsheets/d/1qFvc3Q70RriJS3m_ywBoJvZ47gSTVAuN_X04SI0_XBw/edit#gid=0
https://developers.google.com/web/progressive-web-apps/


 8 BANano – Essentials 

 

1.1 BANano License 

 

Freeware/Donationware License 

 

B4J is Copyright (c) 2010 - 2022 by Anywhere Software All Rights Reserved. 

LIBRARY (Library/library): B4J library files BANano.jar and BANano.xml (by Alain Bailleul) 

SOFTWARE (Software/software): Computer Software 

APPLICATION (Application/application): Any end product as the result of compiling with an 

Anywhere Software product 

SOURCE CODE: human-readable program statements written by a programmer or developer in a 

high-level or assembly language that are not directly readable by a computer and that need to be 

compiled into object code before they can be executed by a computer 

 

BY USING THIS LIBRARY, YOU AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. 

 

1. THIS LIBRARY IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER 

EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL ANY 

COPYRIGHT HOLDER/AUTHOR/DEVELOPER BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 

GENERAL,SPECIAL,INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR 

INABILITY TO USE THE LIBRARY INCLUDING BUT NOT LIMITED TO LOSS OF DATA, FAILURE OF THE 

LIBRARY TO OPERATE WITH ANY OTHER PROGRAMS OR LIBRARY, EVEN IF COPYRIGHT 

HOLDER/AUTHOR/DEVELOPER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

 

2. YOU MAY NOT COPY, SUB-LICENSE, REVERSE ENGINEER, DECOMPILE, DISASSEMBLE, OR 

MODIFY THIS LIBRARY IN ANY WAY. 

 

3. YOU MAY NOT DISTRIBUTE THE LIBRARY ON ANY MEDIUM WITHOUT PRIOR NOTICE FROM 

ALAIN BAILLEUL (alain.bailleul@telenet.be). YOU HAVE TO ASK FOR PERMISSION IN ORDER TO 

MAKE THIS LIBRARY AVAILABLE FOR DISTRIBUTION OVER THE INTERNET OR ANY OTHER 

DISTRIBUTABLE MEDIUM. 

 

4. YOU AGREE NOT TO DISTRIBUTE FOR A FEE AN APPLICATION USING THE LIBRARY THAT, AS ITS 

PRIMARY PURPOSE, IS DESIGNED TO BE AN AID IN THE DEVELOPMENT OF SOFTWARE FOR YOUR 

APPLICATION'S END USER. SUCH APPLICATION INCLUDES, BUT IS NOT LIMITED TO, A 

DEVELOPMENT IDE OR A B4J SOURCE CODE GENERATOR. 

 

By possessing and/or using this library you are automatically agreeing to and show that you have 

read and understood the terms and conditions contained within this Freeware Software License 

Agreement. This Freeware Software License Agreement is then effective while you possess, use and 

continue to make use of these software products. If you do not agree with our Freeware Software 

License Agreement you must not possess or use our library products - this Freeware Software 

License Agreement will then not apply to you. This Freeware Software License Agreement is subject 

to change without notice. 

 

Violators of this agreement will be prosecuted to the full extent of the law. 

 

This library is free, however if you do enjoy it, please consider a donation to Alain Bailleul 

(alain.bailleul@telenet.be) for his time and efforts to make this library possible. 

 

mailto:alain.bailleul@telenet.be
mailto:alain.bailleul@telenet.be


 9 BANano – Essentials 

 

This license file (LICENSE.TXT) shall be included in all copies of the library or any distribution using 

the library in any form resulting from mechanical transformation or translation of the source form, 

including but not limited to compiled object code, generated documentation, and conversions to 

other media types. 

 

If you have any questions regarding this license, please contact alain.bailleul@telenet.be 

 

 

 

mailto:alain.bailleul@telenet.be


 10 BANano – Essentials 

1.2 Installing BANano 

 

This manual assumes you are familiar with B4X products & the B4J language. If not, you will 

have to go through the other excellent booklets and videos Klaus and Erel have made first. It also 

assumes you have installed B4J with all its dependencies. 

 

The most up to date installation instructions for B4J are in the forum at this link: 

https://www.b4x.com/b4j.html.  Please, follow the instructions there if you have not installed B4J 

yet! 

 

You can download the latest version of BANano from the forum 

https://www.b4x.com/android/forum/threads/banano-website-app-pwa-library-with-abstract-

designer-support.99740/%23post-627764. 

 

At the time of writing, the latest version of BANano is 7.37 

 

1. Download the zip and unzip it. 

2. Copy all files from the /Libraries folder to your B4J Additional libraries folder. You should 

see the BANano libraries in the Libraries Tab of the IDE. The versions may vary. 

 

 
 

3. Copy the.b4xtemplate files from the /Templates folder to your B4J Additional libraries 

folder. You can now pick them in the B4J File - New menu. 

 

Check if you do have any of these files in your B4J Libraries folder! If so, remove them. 

Having the same library of .b4xtemplate in both your Libraries and Additional Libraries 

folders will cause problems! 

  

https://www.b4x.com/b4j.html
https://www.b4x.com/android/forum/threads/banano-website-app-pwa-library-with-abstract-designer-support.99740/%23post-627764
https://www.b4x.com/android/forum/threads/banano-website-app-pwa-library-with-abstract-designer-support.99740/%23post-627764


 11 BANano – Essentials 

 

1.3 Setting up Chrome with a Webserver 

 

When making Web Apps, it is very handy to use some kind of Web Server.  Some functionalities of 

a Web App need this and cannot be used by just opening a .html file in the browser. 

 

Chrome has a very nice little Web Server plugin you can use for free:  

 

https://chrome.google.com/webstore/...chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb?hl=en 

 

After installing it, you will find it in your chrome apps. It can be opened like this: 

 

 
 

Just start the plugin and you will be presented a popup box: 

 

 
 

  

https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb?hl=en


 12 BANano – Essentials 

 

Now, all you have to do is select the folder where the BANano generated .html is located and start 

the plugin. 

 

For example, here is the main folder that BANano generated (/Objects/NameOfYourWebApp) 

 

 
 

You can now browse to the URL the plugin is giving you (e.g., in this case https://127.0.0.1:8080): 

 

 
 

Note: When opening a https Web App for the first time, the following Warning can be presented: 

 

 
 

https://127.0.0.1:8080/


 13 BANano – Essentials 

 

 

Just click on 'Advanced' and below the warning an additional text will appear: 

 

 
 

You can now click on 'Proceed to 127.0.0.1 (unsafe)' to allow opening the Web App. 

 

 

 

  



 14 BANano – Essentials 

 

2 My first BANano Project 
 

The installed BANano Skeleton template contains the basic code for a BANano Web App.  The 

source code for this example as it will be automatically created if you make a new project. 

 

In B4J, make a new project: File - New – BANano PWA. 

 

 
 

Give the project a name, e.g., MyWebApp and press OK: 

 

 
 

  



 15 BANano – Essentials 

 

You will see in the B4J Libraries Tab that the template has added the BANano and BANanoSkeleton 

libraries. 

 

 
 

It has also generated some basic source code and a couple of Abstract Designer layouts (Files Tab 

in the IDE). 

 

 
 

Just like in a normal B4J application, you can design you views and layouts in the Abstract Designer.  

 

You can also add extra assets (like images, CSS, JavaScript, JSON, … files) like in a normal B4J 

project.   

 

When adding new assets, make sure to Sync the folder before Building the Web App!  

 

 

 

 

BANano Web Apps can be compiled just like a normal B4J application: in Debug or Release mode.  

Release (Obfuscated) does not do anything for a BANano project, as it has its own system that 

does a similar thing when compiling in normal Release mode. 

 



 16 BANano – Essentials 

 

When compiling (running) the project in Debug Mode, no optimizations (like removing Dead or 

not used Code) are done. In Release mode, this feature can be activated (see further in BANano 

Transpiler Options). 

 

After we ran the project and selected the folder to the Chrome Web Server plugin, we can open the 

Transpiled project. You can follow the progress of the Transpiling in the B4J logs.  It will show you if 

there are errors, warnings and if some optimizations can be done to make the project smaller.  

These optimizations will happen automatically when compiling in Release mode. 

 

When something does not work, this is the first place to look what could've gone wrong! 

 

 
 

When Transpiling, BANano will generate all the html, CSS and JavaScript code.  This 

generated code can then be distributed without the need of the B4J code or any .jar file. 



 17 BANano – Essentials 

 

 

The result of this first project will look something like this when we open https://127.0.0.1:8080 (or 

whatever the Chrome Web Server plugin will show): 

 

 
 

You have successfully made your first B4J BANano WebApp! 

 

The following chapters will now break down how we got here and how you will be able to create 

your own functionalities in your Web Apps. 

  

https://127.0.0.1:8080/


 18 BANano – Essentials 

 

2.1 Looking into the BANano Layout files 

 

If you open the WelcomePageLayout.bjl for example in the Abstract Designer, you will see a very 

familiar B4J presentation.   

 

 
 

 
 

You can close the WYSIWYG form as it is not used by a BANano Project.  You can use the 

live Browser instead. 

 

  



 19 BANano – Essentials 

 

BANano Layout files are made up EXCLUSIVELY out of Custom Views!  

 

 
 

These views come from BANano Library files (like BANanoSkeleton) and are especially written to be 

used in BANano layouts.  You can use the Generate Members to add the Components and Events 

to your code like in a normal B4J project. 

 

 



 20 BANano – Essentials 

 

There are a couple of rules that differ from a normal B4J Abstract Designer layout.  This is because 

the BANano Library does not have access to some of the things in the B4J IDE like native 

B4J/B4A/B4i/B4R projects do. 

 

The BANano Layout Rules 

 

1. Due to a current limitation in B4J, the Parent of a control cannot be changed for Custom 

Views. (It is always Main) A simple trick can be used to emulate this and the BANano 

Transpiler will automatically know which component is a child of another one. All you have 

to do is keep some room around each control.  

 

 
 

Because the WelcomePageName control (blue) is smaller than the WP_R2 control (red), 

BANano will figure out that WelcomePageName is a child of WP_R2. 

 

2. ONLY the properties visible in this Screenshot (all of them) can be used. the rest will be 

ignored by BANano. The ones with the red border can vary depending on the control. 

 

 



 21 BANano – Essentials 

 

The Common Properties will only be used if the builder of the BANanoLibrary uses them. 

In most cases, all useful properties will be in Custom Properties. The library writer will 

probably add an extra Left, Right, … property to the Custom Properties if they are 

relevant. See the documentation the specific BANano Library. 

 

3. It is important that the Name of the controls you put on the layout are unique across 

layouts if you plan to use them in your code!  This can be easily archived by giving those 

components a prefix: e.g., here the row control has been given the prefix WP_. 

 

There is a special Property AutoID/Name that can be used for controls that you will not 

use in your B4J code.  If checked, BANano will give this control a random name when 

transpiling so they do not interfere with other layouts. 

 

In BANanoSkeleton, the following component do have AutoID/Name property: 

SKColumn 

SKContainer 

SKDivider 

SKImage 

SKLabel 

SKRow 

 

 

        

  



 22 BANano – Essentials 

 

2.2 A first look at the source code and structure of a BANano App  

 

This is just a first glance on how the source code of a BANano Web App looks like.  Following 

chapters will go deeper into the specifics of the BANano lingo. 

 

A line that is always needed is a declaration of BANano.  You can do this in every class or module 

as it is a singleton. 

 

The BANano object is your main entry point to access JavaScript, HTML or CSS specific methods. 

 
Sub Process_Globals 

 Private BANano As BANano 'ignore 

 … 

End Sub 

 

This is also the place where the Generated Members from the Abstract Layout Editor will add the 

controls. 

 

The next important part is the AppStart() method.  This is the ONLY method that will NOT BE 

TRANSPILED to JavaScript! 

 

So, this is the place to set some BANano directives (like the name of your generated Web App, 

some Transpiler Options like remove dead code, doing some file copies and starting a 

BANano.Build.  BANano.Build will start the Transpiler and generate everything needed for the 

stand-alone Web App. 

 
Sub AppStart (Form1 As Form, Args() As String) 

 ' you can change some output params here 

 BANano.Initialize("BANano", "BANanoSkeleton",7) 

 BANano.Header.Title="BANano Skeleton" 

 BANano.JAVASCRIPT_NAME = "app" & DateTime.Now & ".js" 

  

 BANano.TranspilerOptions.MergeAllCSSFiles = True 

 BANano.TranspilerOptions.MergeAllJavascriptFiles = True 

 BANano.TranspilerOptions.RemoveDeadCode = True 

 BANano.TranspilerOptions.ShowWarningDeadCode = True 

 

 ' write the theme 

 SKTools.WriteTheme 

     

 ' start the build  

 BANano.Build(File.DirApp) 

  

 #if release 

  ExitApplication 

 #end if  

End Sub 

 

  



 23 BANano – Essentials 

 

The final needed method is BANano_Ready().  This is the main entry point to your WebApp when 

it is loaded.  It means all needed assets (like CSS, JavaScript, etc…) is now loaded and you can start 

manipulating what you see in the Browser. 

 
' HERE STARTS YOUR APP 

Sub BANano_Ready() 

 ' get the body tag 

 Private body As BANanoElement 

 body.Initialize("#body") 

  

 ' append and load our main layout 

 body.Append($"<div 

id="mainHolder"></div>"$).Get("#mainHolder").LoadLayout("MainLayout") 

 ' append and load a modal sheet 

 body.Append($"<div 

id="modalHolder"></div>"$).Get("#modalHolder").LoadLayout("WelcomeModalLa

yout") 

  

 ' loading our menu in our sidebar 

 MainSidebar.Element.LoadLayout("MenuLayout") 

  

 ' making the menu layout responsive: always open when screen size 

is bigger than 992px 

 Bigger992px.Initialize("(min-width: 992px)") 

 Smaller992px.Initialize("(max-width: 991px)") 

  

 ' add our menu items  

 MenuList.AddMenuItem("", "page1", "fas fa-user", 

"{NBSP}{NBSP}Welcome page") 

 MenuList.Start 

   

 ' load our first page 

 MainPageHolder.Element.LoadLayout("WelcomePageLayout") 

End Sub 

 

  



 24 BANano – Essentials 

 

3 Support of the B4J language 
 

One of the major strengths of BANano is its support of the normal B4J Core Language.  It covers 

about 99% of the B4J keywords that can be transpiled to pure JavaScript.  For most of the 

keywords it does not support (either because they are not applicable to a WebApp or because they 

use some advanced B4J language feature), an alternative is provided through the BANano object. 

 

This means you can re-use major chunks of B4X logic code directly into your BANano Web App 

projects! 

 

Here is the list of keywords that are not (directly) transpilable by BANano: 

 
Callsub, Callsub2, Callsub, Callsubdelayed, Callsubdelayed2, 

Callsubdelayed3 ->  Use BANano.CallSub instead 

 

Charstostring 

Density 

Diptocurrent 

ExitApplication 

Exitapplication2 

File 

Getenvironmentvariable 

Getsystemproperty 

Is -> Use BANano.IsMap, BANano.IsList, BANano.IsNull,… for more 

possibilities 

Isdevtool 

Regex -> Use BANAnoRegEx instead 

Setsystemproperty 

Smartstringformatter 

Stopmessageloop 

Startmessageloop 

 

(*) From BANano 7.35+, the normal CallSub/CallSubDelayed methods are also 

supported 

 

All variable Types (including Maps, Lists, Type, Arrays and StringBuilders) are supported. You can 

make Classes, use Modules, SmartStrings and all the powerful stuff Erel has provided in the B4J 

language.  You make your normal For and While loops, your If and Select Case conditions, your 

variable declarations etc… 

 

Limitations of the DateTime type. The following methods are supported: 

 
Now,DateParse,TimeParse,Date,Time,Dateformat,TimeFormat,Add,GetYear,GetMonth,Get

DayOfMonth,GetDayOfYear,GetDayOfWeek,GetHour,GetMinute,GetSecond,GettimezoneOffs

etAt,TicksPerDay,TicksPerHour,TicksPerMinute,TicksPerSecond,TimezoneOffset,SetTi

meZone 

 

For more advanced Date and Time functionalities you can use an external library like 

moment.js 

 

  



 25 BANano – Essentials 

 

Additional, BANano contains special objects that replace some of the other core libraries.  They are 

not directly interchangeable with the B4J ones because they cannot exactly be matched. They are 

still very similar, but may have additional methods/properties available in JavaScript, or can be 

missing some typical B4J ones. 

 

Some of those special objects available now are: 

 

BANanoJSONGenerator <-> B4J JSONGenerator 

BANanoJSONParser <-> B4J JSONParser 

BANanoWebSocket <-> B4J WebSocket 

BANanoMQTT <-> B4J jMQTT 

BANanoRegEx <-> B4J RegEx 

BANanoSQL <-> B4J jSQL 

 

(*) DEPRECIATED: From BANano 7.35+, you can just use the normal B4J Json and jMQTT libraries! 

 

More mappings of other B4J libraries may be added in future versions of BANano. E.g., when Web 

Apps fully support Bluetooth, a BANanoBluetooth object may become available. 

 

The golden rules in BANano are: 

 

1. Be as close to the B4X language as possible 

2. Support as many browsers as possible (meaning if something is only available for e.g., 

Chrome but not in the other major browsers yet, it will not be part of the BANano Core 

library). 

 

It should be the responsibility of BANano Library Builders to try to follow these rules also as close 

as possible. 

 

This maximizes cross-platform AND cross-browser compatibility, without the programmer having 

to worry about it. 

  



 26 BANano – Essentials 

 

4 The Web Connection 
 

Next to the core B4J language, BANano has a lot of objects and methods that make the link 

between B4J and HTML, CSS and JavaScript. They have both a 'B4J' and a 'Web' feel.  They can use 

the fantastic B4X AutoComplete features (which speeds up programming dramatically!) and you 

can write/use them in a very familiar B4J way.  But they are close enough to JavaScript so one can 

recognize how to write something that looks very similar.  Comes in handy when you want to use 

some JavaScript snippet on the internet and you want to translate it to B4J code. 

 

They are kind of 'The Best Of Both Worlds' objects! 

 

Some of them are: 

 

BANano Core Objects: 

BANanoObject 

BANanoElement 

BANanoEvent 

BANanoPromise 

BANanoFetch 

BANanoXMLHttpRequest (for legacy only, use the more modern BANanoFetch instead) 

 

Cannot be initialized, but are properties of the main BANano Object 

BANanoConsole 

BANanoWindow 

BANanoHistory 

BANanoLocation 

BANanoNavigator 

BANanoScreen 

BANanoGeoLocation (and the resulting BANanoGeoPosition) 

 

JavaScript objects 

BANanoURL 

BANanoMediaQuery 

BANanoMutationObserver 

 

BANano Specials: 

BANano Background Workers 

BANanoRouter 

 

We will go deeper into most of them in the next chapters, but it suffices for the moment that you 

are aware they exist. 

 

  



 27 BANano – Essentials 

 

Another important Web Connection in BANano is the ability to write raw JavaScript and CSS right 

into your code! Very similar to B4Js possibility to write raw Java in the code. 

 

IMPORTANT! This can also be done with just B4J and BANano code. But they are 

available if you do know CSS or JavaScript for a quick fix, or if something would be 

missing in the BANano library. I will try to avoid to use this method as much as possible 

in the examples I will give in this manual and use pure B4J/BANano instead. 

 

This is for example perfectly possible to write this CSS styling snippet anywhere in your code: 

 
#If CSS 

.hidelist { 

 display: none; 

} 

.clock-loader { 

  --clock-color: #FF8800; 

  --clock-width: 2rem; 

  --clock-radius: calc(var(--clock-width) / 2); 

  --clock-minute-length: calc(var(--clock-width) * 0.4); 

  --clock-hour-length: calc(var(--clock-width) * 0.25); 

  --clock-thickness: 0.2rem; 

  position: relative; 

  display: flex; 

  justify-content: center; 

  align-items: center; 

  width: var(--clock-width); 

  height: var(--clock-width); 

  border: 3px solid var(--clock-color); 

  border-radius: 50%; 

} 

.clock-loader::before, .clock-loader::after { 

  position: absolute; 

  content: ""; 

  top: calc(var(--clock-radius) * 0.25); 

  width: var(--clock-thickness); 

  background: var(--clock-color); 

  border-radius: 10px; 

  transform-origin: center calc(100% - calc(var(--clock-thickness) / 2)); 

  animation: spin infinite linear; 

} 

.clock-loader::before { 

  height: var(--clock-minute-length); 

  animation-duration: 2s; 

} 

.clock-loader::after { 

  top: calc(var(--clock-radius) * 0.125 + var(--clock-hour-length)); 

  height: var(--clock-hour-length); 

  animation-duration: 15s; 

} 

#End If 

 

BANano will recognize this code when transpiling and automatically add it to a .css file. 

  



 28 BANano – Essentials 

 

A similar example for JavaScript: 

 
#if JAVASCRIPT 

function evaluate(s) { 

   // so we get back a string 

   return '' + eval(s); 

} 

#End If 

 

And we can call it in B4J like this: 
 

Log(BANano.RunJavascriptMethod("evaluate", Array As String("10 * 20"))) 

 

The BANano.RunJavascriptMethod() can also be used in a similar way to call JavaScript 

methods from external JavaScript files. 

 

You can also use #If SMARTJAVASCRIPT instead and use the ${var} of SmartStrings.   

 

Example: 

 
plot.Initialize("Plotly") 

     

Dim body As BANanoElement 

body.Initialize("#body") 

body.Append($"<div id="chart" style="width:600px;height:250px;"></div>"$) 

     

Dim element As String = "chart" 

Dim coords As List 

Dim margin As Map 

Dim settings As Map 

     

#If JavaScriptSmart 

    ${coords} = [{x: [1, 2, 3, 4, 5], y: [1, 2, 4, 8, 16] }] 

    ${margin} = {margin: { t: 0 } } 

    ${settings} = {showSendToCloud:true} 

#End If 

     

plot.RunMethod("newPlot", Array(element, coords, margin, settings )) 

 

BANano can even include PHP (with  #If PHP … #End If) that will be added to a .php file, but it is 

limited as the preferred way is using B4J's jServer (or with the BANanoServer, which is just an 

easy-to-use wrap around B4J's jServer), a full blown embedded Jetty Web server. 

 

 

  



 29 BANano – Essentials 

 

5 BANanoObject: The jack-of-all-trades 
 

This is probably the toughest topic in BANano. I think it is important you understand what 

this object is and does, especially if you plan to use or wrap some existing JavaScript 

library or code. Even if you don't plan to do this, at least try to grasp the essence of what 

it is, as it can be at one point in your development become a life saver. The rest will be 

easier, I promise! 

 

It is rather advanced BANano usage, but somehow I feel this story needs to be told before 

all the rest. 

 

BANanoObject is probably the most powerful object in BANano.  It can be or do about anything 

and is best comparable with an B4J JavaObject on steroids. Many other objects like 

BANanoElement are children of the BANanoObject class and inherit many of its functionalities (like 

RunMethod or SetField). 

 

Important note before we start: about parameters… 

 

As B4J does not allow a variable number of in its methods, but this is very common in JavaScript, 

we have to use some trickery to do this anyway.  For this, we use the B4J Array keyword. 

 

For example, a method is declared as this and can have one or more parameters: 

 
Sub MyFunction(params As Object) 

 

End Sub 

 

We can now pass one parameter: 
 

MyFunction("Alain") 

 

Or multiple parameters: 
 

MyFunction(Array("Alain", 48, "Ieper")) 

 

One of these parameters can be an Array in itself.  How do we do that? By adding an extra Array. 

 
MyFunction(Array(Array(48, 174))) 

MyFunction(Array("Alain", Array(48, 174), "Ieper")) 

 

Quiz: what is the different output between these two lines after transpiling? 
 

MyFunction(Array(48, 174)) 

MyFunction(Array(Array(48, 174))) 

 

 

 

 



 30 BANano – Essentials 

 

Answer:  

 

The first one will call the method as MyFunction(48,174) ' two sperate parameters 

The Second one will call the method as MyFunction(Array(48,174)) ' one parameter that is 

an array 
 

Simple rule to remember: The outer Array will be removed when Transpiling. 

 

OK, are you ready? Let's GO! 

 
Because of its many possible appearances, it has several initialization methods depending on 

how you want to use it. I marked the important ones in Red.  The others are really advanced ones 

you will probably never encounter when making a Web App. Just read them to know they exist in 

case you encounter a weird JavaScript library declaration. 

 

Initialize(jsObject As Object) 

 

This is its most basic form.  It is the equivalent of  =. Suppose you use some library like jQuery and 

you want to make a reference to it in B4J. 

 

You would write: 

 
Dim JQ as BANanoObject 

JQ.Initialize("$") ' $ is in jQuery how you can access its methods 

                   ' and properties.  You could compare it with  

                   ' what the BANano object is in B4J. 

 

Now you can use all the methods and properties of jQuery in B4J (with e.g. the RunMethod or 

GetField methods, see further) 

 

Initialize2(jsObject As String, params As Object) As BANanoObject 

 

Initializes the object with a New instance of a JavaScript class.  While a library like jQuery is more 

like a 'Module' in B4J, some JavaScript libraries are more like a B4J 'Class' that need an .Initialize(). 

 

Take for example some JavaScript library called "When" (that is a DatePicker).  The JavaScript 

documentation would show you would need to initialize an instance of the "When" class by writing 

this: 

 
let datepicker = new When({input: '#datepicker', singleDate: true}); 

 

In BANano we would use the Initialize2() method: 

 
Dim datepicker As BANanoObject 

datepicker.Initialize2("When", CreateMap("input": "#datepicker", 

"singleDate": True)) 

 

 



 31 BANano – Essentials 

 

Initialize3(params As Object) As BANanoObject 

 

This initialize is used to call some constructor ( = an initialization method) of a JavaScript object. It 

is rather rare that you will have to use this one. 

 

Let's take for example the RecordRTC (an audio/video library) JavaScript library.  It acts like a 

module (see the normal Initialize() method), but you have to Initialize it differently (it needs other 

parameters) depending on what you want to do with it. Record audio, record video, …). 

 

So, if you want to record video, you would need to do this in JavaScript according to its 

documentation: 

 
let recorder = RecordRTC(stream, {'type': 'video', 'mimeType': 

'video/webm', 'videoBitsPerSecond' : 128000} 

 

And for Audio:  

 
let recorder = RecordRTC(stream, {'type': 'audio', 'mimeType': 

'audio/webm', 'audioBitsPerSecond' : 128000} 

 

As you can see, there is no New and RecordRTC acts as a module, not as a class. 

 

So, in B4J we can use the Initialize3() method to get the Recorder: 

 
' first we want to 'grab' the RecordRTC library module itself 

' (using the normal Initialize) 

Dim RecordRTC as BANanoObject 

RecordRTC.Initialize("RecordRTC") 

 

' and now 'run' its constructor method to get the Recorder. 

Recorder = RecordRTC.Initialize3(Array(Stream, CreateMap("type": "video", 

"mimeType": "video/webm", "videoBitsPerSecond" : mVideoBitsPerSecond))) 

 

Similar for the Audio: 

 
Dim RecordRTC as BANanoObject 

RecordRTC.Initialize("RecordRTC") 

 

Recorder = RecordRTC.Initialize3(Array(Stream, CreateMap("type": "audio", 

"mimeType": "audio/webm", "audioBitsPerSecond" : mAudioBitsPerSecond))) 

 

Initialize4(jsObject as String, params as Object) As BANanoObject 

 

This is basically the same as .Initialize, but with parameters.  It does NOT do a New like the 

Initialize2 method. 

 

Initialize5() As BANanoObject 

 

This Initializes the object to plain JavaScript Object.  This is basically set the object in JavaScript to 

{}. You can use all the other BANanoObject methods like SetField on it. 

 



 32 BANano – Essentials 

 

Initialize6(javaScriptObject As String) 

 

Initialize a BANanoObject from a JavaScript object, defined as a B4J SmartString. It is a shortcut 

method for Initialize5() where you would use the .SetField() method. 

 

Example: 

 
Dim b As BANanoObject 

b.Initialize6($"{body: "myBody", name: "myName", city: "Ieper"}"$) 

 

Initalize5() could be re-written as: 

 
Dim b As BANanoObject 

b.Initialize6("{}") 

 

Initialize7(javaScriptObject  As Object, constructor as String, params as 

Object) 

 
Another advanced declaration you will probably never encounter. 

 

Let's say in JavaScript you see something like this: 

 
var innerConn = new JsStore.Connection(); 

var query = new innerConn.$sql.Query(SQL); 

 
In B4J this would become: 

 
Dim InnerConn As BANanoObject 

InnerConn.Initialize2("JsStore.Connection", Null) 

 
Dim Query As BANanoObject 

Query.Initialize7(innerConn, "$sql.Query", SQL) 

 

Congratulations! You just made it through probably the hardest 

part of BANano! 

  



 33 BANano – Essentials 

 

Now we can start doing some fun stuff with the BANanoObject we created. I'm not going to go 

through all of the methods that can be used on this object, just the most commonly used ones.  

You can always check the quick reference if you would need one of the other ones. If you 

understand these couple of methods below, you're there! 

 

RunMethod(methodName As String, params As Object) As BANanoObject 

 
Runs a method of the BANanoObject. Suppose we have declared a BANanoObject like this: 

 
Dim SomeLib As BANanoObject 

SomeLib.Initialize("SomeJavaScriptLib") ' where "SomeJavaScriptLib" is 

some JavaScript library. 

 

Now, we know from the JavaScript documentation of this library that it has a method Start. 

 

 

We can then run this on our BANanoObject: 

 
SomeLib.RunMethod("Start", null) ' case sensitive, and pass null because 

this function has no parameters. 

 

Another example, if the JavaScript library has a method Sum(x,y). 

 

This would be called as: 

 
Dim mySum as Long = SomeLib.RunMethod("Sum", Array(10,20)) ' result is 30 

 

Result() As Object 

 

This method can be used if the result of e.g. RunMethod is something different than the B4J IDE 

expects.  Internally it does nothing, but you get rid of the B4J error or warning. 

 

Example (should for example the Sum method return something different than a long and the IDE 

gives an error): 

 
Dim mySum as Long = SomeLib.RunMethod("Sum", Array(10,20)).Result 

 

SetField(field As String, value As Object) 

 

Sets a property on a BANanoObject. 

 

Example: 

 
Dim myObj as BANanoObject 

myObj.Initialize5 

myObj.SetField("prop1", value1) 

myObj.SetField("prop2", "value2") 

 

 

 



 34 BANano – Essentials 

 

Getfield(field As String) As BANanoObject 

 

Returns the value of a property. 

 

Example: 

 
Log(myObj.GetField("prop1")) 

 

Delete(property As String) 

 

Deletes a property from a BANanoObject. 

 

Example: 

 
myObj.Delete("prop1") 

 

 

 

 

HasOwnProperty(property As String) as Boolean 

 

Check if the property is native to the object, or inherited by a parent object. 

 

ToString() As String 

 

Converts the object to a string 

 

A lot of the methods are chainable. This means you can call one after the other. 

 

Example: 

 
Dim myResult as String 

myResult = myObj.GetField("prop").GetField("subprop").RunMethod("calc", 

Array(10,20)).Result 

 

As said, there are other methods available on this object to explore.  Some of them will be 

explained further on in the examples as we go as they need a more extensive context. 

  



 35 BANano – Essentials 

 

6 BANanoElement: Talking to the DOM 
 

6.1 Introduction 

 

As shown in the previous chapter, we have learned how B4J can interact with all kind of JavaScript 

objects with BANanoObject. But how about the interaction with the UI? This is where 

BANanoElement comes in. 

 

BANanoElement has some of the methods from the BANanoObject, like GetField() and 

RunMethod() etc.  But its main purpose is talking to the browser DOM. It is a wrap of the well-

used Umbrella framework, which is a very lightweight Vanilla JavaScript alternative to the maybe 

better known but bloated jQuery library. 

 

This is the element you use to build HTML tags, set styles, add and remove CSS classes to change 

the appearance of the tag, add events like click or hover and a lot more. 

 

In this chapter we will go over how Web UI controls can be created easily in B4J using BANano.  

 

Learning to work with this framework has the huge advantage of speed, as you talk directly to the 

browser and don't have to go through other heavy JavaScript frameworks for example. BANano is 

the native B4J answer to them!  

 

Speed is very important nowadays if you want your PWA to succeed. Users are becoming more are 

more demanding and BANano gives you the tools to give them what they want. The 

BANanoSkeleton library, which does talk directly to the browser, makes sure you get the 

maximum chance to do so and is still not very complicated to use, thanks to the B4X philosophy. 

 

 

  

https://umbrellajs.com/


 36 BANano – Essentials 

 

6.2 Using HTML tags, with style! 

 

6.2.1 Getting existing tags 

 

HTML Tags can be identified uniquely if they have an id property, or a bunch of them together, e.g. 

all the tags with a certain style class or from a certain type (div, button, input, …). 

 

You can make this selection using the Initialize() method.  

 

Initialize(target As Object) 

 

To get a certain unique tag, use "#" + idName.  The idName is case sensitive! 

 

Example: 

 
Dim element As BANanoElement 

element.initialize("#myId")  

 

To get a group of tags, you can either use a class (with the . prefix), or use the tag name. 

 

Suppose this is or HTML: 

 
<div> 

 <button class="mybutton">Button 1</button> 

 <button class="mybutton">Button 2</button> 

 <button class="mybutton">Button 3</button> 

</div> 

<div> 

 <button class="mybutton2 mycolor">Button 4</button> 

 <button class="mybutton2 mycolor">Button 5</button> 

 <button class="mybutton2 mycolor">Button 6</button> 

</div> 

 

We can grab all buttons now with: 

 
Dim element As BANanoElement 

element.Initialize("button") 'tag name button 

 

The result will be that BANanoElement contains ALL 6 buttons. 

 

If we want to grab only the buttons which have the class "mybutton2", you can use: 

 
Dim element As BANanoElement 

element.Initialize(".mybutton2") ' notice the dot before mybutton2 

 

This may look strange at first for a B4J programmer that one BANanoElement can be multiple Tags.  

But it has big advantages! 

 

  



 37 BANano – Essentials 

 

Instead of having to add a click event to every single button one by one, we can do them all at 

once: 

 
Dim element As BANanoElement 

element.Initialize("button") 

element.on("click", Me, "handleClick") 

 

Now, each time one of these buttons is clicked, it will call the handleClick method. 

 

6.2.2 Creating new tags 

 

This way of 'grabbing' one or more tags can of course only be done if the tags already exist.  How 

about creating a brand new one? 

 

For this we use the BANano.CreateElement() method 

 

BANano.CreateElement(Tag as String) 

 

This creates a new BANanoElement with the HTML tag "Tag". Note that it is NOT attached to 

anything (yet)! 

 
Dim newElement As BANanoElement 

newElement= BANano.CreateElement("div") 

 

We can now do al kind of things with the 'virtual' tag, like adding styles, classes, even other 

BANanoElements. 

 
Dim newElement As BANanoElement 

newElement= BANano.CreateElement("div") 

newElement.AddClass("myCSSclass1 mycolor2") 

newElement.SetAttr ("id", "myDiv") 

newElement.SetText("my text") 

 

The result of this code will be in html: 
 

<div id="myDiv" class="myCSSclass1 mycolor2">my text<div> 

  



 38 BANano – Essentials 

 

6.2.3 Adding the tags to the DOM 

 

As explained before, it is not yet attached to anything in the browser.  We can now attach this html 

to another BANanoElement with several methods like Append, Before, After, Replace and Prepend: 

 

Append(htmlOrObject As Object) As BANanoElement 

 

Add some html as a child at the end of each of the matched elements 

 

Dim body as BANanoElement  ' note that the body tag does ALWAYS exist! 
body.Initialize("body") 

 

body.Append(newElement) 

 

Before(htmlOrObject As Object) As BANanoElement 

 

Add some html as a sibling before each of the matched elements 

 
dim allWithClassMyButton as BANanoElement 

allWithClassMyButton.initialize(".mybutton") 

 

allWithClassMyButton.Before(newElement) 

 

After(htmlOrObject As Object) As BANanoElement 

 

Add some html as a sibling after each of the matched elements 

 
dim allWithClassMyButton as BANanoElement 

allWithClassMyButton.initialize(".mybutton") 

 

allWithClassMyButton.After(newElement) 

 

Replace(htmlOrObject As Object) As BANanoElement 

 

Replace the matched elements with the passed elements 

 
dim allWithClassMyButton as BANanoElement 

allWithClassMyButton.initialize(".mybutton") 

 

allWithClassMyButton.Replace(newElement) 

 

Prepend(htmlOrObject As Object) As BANanoElement 

 

Add some html as a child at the beginning of each of the matched elements 

 
dim allWithClassMyButton as BANanoElement 

allWithClassMyButton.initialize(".mybutton") 

 

allWithClassMyButton.Prepend(newElement) 

  



 39 BANano – Essentials 

 

As you may have noticed, the parameter in these methods is called "htmlOrObject". 

This means, next to appending another BANanoElement, we can also just add the HTML 

as a string. 

 

Example: 

 

Dim body as BANanoElement  ' note that the body tag does ALWAYS exist! 
body.Initialize("body") 

 

body.Append($"<div id="myDiv" class="myCSSclass1 mycolor2">my 

text<div>$") 

 

These methods return a BANanoElement. This is NOT the newly created one, but the 

original one. 

 

If we want to return other tag, we can use for example the Get() method with the ID. 

 

Dim myDiv as BANanoElement = body.Append($"<div id="myDiv" 
class="myCSSclass1 mycolor2">my text<div>$").Get("#myDiv").Result 

 

There are several other methods you can use to "get" other tags, like .Find(), .Filter(), .Closest(), 

.Siblings(), .First(), .Last(), … See the quick reference for more info on these methods. 

 

6.2.4 Removing Tags (or only its children) 

 

You can remove tags in two ways: the tag and all its children, or just its children. 

 

Remove() As BANanoElement 

 

Removes the matched elements.  Example, suppose this is our html: 

 
<div id="myDiv1"> 

 <button class="mybutton">Button 1</button> 

 <button class="mybutton">Button 2</button> 

 <button class="mybutton">Button 3</button> 

</div> 

<div id="myDiv2"> 

 <button class="mybutton2 mycolor">Button 4</button> 

 <button class="mybutton2 mycolor">Button 5</button> 

 <button class="mybutton2 mycolor">Button 6</button> 

</div> 

 

And we use this code: 

 
Dim myDiv2 As BANanoElement 

myDiv2.Initialize("#myDiv2") 

 

myDiv2.Remove 

 



 40 BANano – Essentials 

 

Result: 

 
<div id="myDiv1"> 

 <button class="mybutton">Button 1</button> 

 <button class="mybutton">Button 2</button> 

 <button class="mybutton">Button 3</button> 

</div> 

 

Empty() As BANanoElement 

 

Remove all child nodes of the matched elements.  Example, suppose this is our html: 

 
<div id="myDiv1"> 

 <button class="mybutton">Button 1</button> 

 <button class="mybutton">Button 2</button> 

 <button class="mybutton">Button 3</button> 

</div> 

<div id="myDiv2"> 

 <button class="mybutton2 mycolor">Button 4</button> 

 <button class="mybutton2 mycolor">Button 5</button> 

 <button class="mybutton2 mycolor">Button 6</button> 

</div> 

 

And we use this code: 

 
Dim myDiv2 As BANanoElement 

myDiv2.Initialize("#myDiv2") 

 

myDiv2.Empty 

 

Result: 

 
<div id="myDiv1"> 

 <button class="mybutton">Button 1</button> 

 <button class="mybutton">Button 2</button> 

 <button class="mybutton">Button 3</button> 

</div> 

<div id="myDiv2"> 

</div> 

 

  



 41 BANano – Essentials 

 

6.2.5 Looping through a multi-tag BANanoElement 

 

As we have seen, BANanoElement can sometimes hold more than one tag (see the Button 

example) 

 

So, suppose you want to do something with each of these tags separate. For this you can use the 

EachStart and EachEnd methods. 

 

Those coupled methods are working in a special way in BANano.  If works like an If Then 

– End If in B4J, meaning the code in between is executed as a whole. 

 

Example: 

 
Dim AllButtons As BANanoElement 

AllButtons.Initialize("button") 

 

Now we have all our buttons, we can now loop through them like this: 

 
' some temporary variables the EachStart needs. 

Dim OneButton as BANanoElement 

Dim index as long 

 

AllButtons.EachStart(OneButton, index) 

 Log(index) 

 Log(OneButton.GetAttr("id")) 

AllButtons.EachEnd 

 

6.2.6 Styling Tags 

 

Styling Tags can be done with CSS. You can use the BANanoElement AddClass / ToggleClass / 

RemoveClass methods to assign a CSS class. 

 

Example: 

 
' hides the tag 

#If CSS 

.hidelist { 

 display: none; 

} 

#End If 

 
ListHolder.AddClass("hidelist") 

 

It can also be done with the .SetStyle() method.  You should always prefer CSS classes over 

using style. The latter should only be used if classes “can’t handle it”. 

 

The parameter in .SetStyle is Json! So do mind the correct quotes and comma (instead ; 

in CSS ) 

 
ListHolder.SetStyle($"{"margin-right": "0px", "margin-top": "8px"}"$)   



 42 BANano – Essentials 

 

6.2.7 BANanoEvent: Working with Events 

 

Time to put our BANanoElements to work! 

6.2.8 Adding Events 

 

We can simply add events to a BANanoElement using the .On() method, or by using an 

AddEventListener() or by using the HandleEvents().  They do approximately the same, it is a 

matter of preference. AddEventListener() is a bit more flexible and is the hardcore JavaScript way 

you will see used a lot in examples on the internet. 

 

On(events As String, module as Object, method As String) As BANanoElement 

 

Example: 

 
Dim myDiv As BANanoElement 

myDiv.Initialize("#myDiv") 

 

myDiv.On("click", Me, "handleClick") 'case sensitive! 

 

Sub handleClick(event As BANanoEvent) 

    BANano.Alert("Stop clicking me!") 

End Sub 

 

The method, here handleClick MUST have this signature: 
 

Sub MethodName(event As BANanoElement) 

 

End Sub 

 

AddEventListener(eventName as String, callbackMethod As Object, 

useCapture as Boolean) 

 
useCapture: A Boolean value that specifies whether the event should be executed in the capturing 

or in the bubbling phase.  

    

true - The event handler is executed in the capturing phase 

false - The event handler is executed in the bubbling phase 
 

This is the alternative way to so the same: 

 
Dim myDiv As BANanoElement 

myDiv.Initialize("#myDiv") 

 
myDiv.AddEventListener("click", BANano.Callback(Me, "handleClick", Null), 

true) 

 
Sub handleClick(event As BANanoEvent) 

    BANano.Alert("Stop clicking me!") 

End Sub 

  



 43 BANano – Essentials 

 

HandleEvents(events As String, module As Object, method As String) As 

BANanoElement 

 
Does exactly the same as the .On() method, except it will automatically do an event.PreventDefault. 

 

The preventDefault method of the event tells the user agent that if the event does not get 

explicitly handled, its default action should not be taken as it normally would be. 

 

The event continues to propagate as usual, unless one of its event listeners calls 

event.StopPropagation which terminates propagation at once. 

 

Example: 

 
Dim myDiv As BANanoElement 

myDiv.Initialize("#myDiv") 

 

myDiv.HandleEvents("click", Me, "handleClick") 'case sensitive! 

 

Sub handleClick(event As BANanoEvent) 

    BANano.Alert("Stop clicking me!") 

End Sub 

 

This would be the same as: 
 

Dim myDiv As BANanoElement 

myDiv.Initialize("#myDiv") 

 

myDiv.On("click", Me, "handleClick") 'case sensitive! 

 

Sub handleClick(event As BANanoEvent) 

 Event.PreventDefault 

     BANano.Alert("Stop clicking me!") 

End Sub 

  



 44 BANano – Essentials 

 

6.2.9 Removing Events 

 

This can be done using the Off() method or RemoveEventListener(). Again, it is a choice of 

preference. 

 

So, suppose we want to remove our previously added click event. 

 

Off(events as String) 

 
Dim myDiv As BANanoElement 

myDiv.Initialize("#myDiv") 

 

myDiv.Off("click") 

 

RemoveEventListener(eventName As String, callbackMethod As Object, 

useCapture As Boolean) 

 
Dim myDiv As BANanoElement 

myDiv.Initialize("#myDiv") 

 
myDiv.RemoveEventListener("click", BANano.Callback(Me, "handleClick", 

Null), true) 

 

Off and On are often used together chained.  This makes sure an event doesn't run twice. 

 

Example: 

 
Dim myDiv As BANanoElement 

myDiv.Initialize("#myDiv") 

 

myDiv.Off("click").On("click", Me, "handleClick") 'case sensitive! 

 

Sub handleClick(event As BANanoEvent) 

 Event.PreventDefault 

     BANano.Alert("Stop clicking me!") 

End Sub 

 

  



 45 BANano – Essentials 

 

6.3 Loading Abstract Designer Layouts 

 

Of course, all the above is at its deepest level.  Thankfully, we have B4Js Abstract Designer that can 

declare most of these things if we use an UI library like BANanoSkeleton.  BANanoSkeleton has 

done all that already for you! But I find it important you are aware of how it all works internally. 

 

Loading Layouts in BANano is almost identical to doing it in any other B4X product.  It has some 

extra Load methods that will help you. 

 

LoadLayout(layoutName As String) 

 
' create a new BANanoElement pageHolder that can hold our layout 

Dim pageHolder As BANanoElement = body.Append(html).Get("#pageHolder")  

 

pageHolder.LoadLayout("MainLayout") 

 

LoadLayoutAppend(layoutName As String) 

 

Same as LoadLayout but does not empty the BANanoElement that will hold the layout. 

 

LoadLayoutArray(layoutName As String) As Long 

 

This is useful if you want to load the same layout several times, e.g. to build some kind of list of 

items where each item is using the same layout.  It does not empty the holding BANanoElement. 

 

It will return a unique number (long) that has been added as suffix to every view in the layout. 

 

Example situation: 

 

Suppose we have a layout that has a button called btnStop on it. When we run to add the layout 3 

times: 

 
For i = 0 to 2 

Dim index as long = pageHolder.LoadLayoutArray("myLayout") 

Dim views As Map = BANano.GetAllViewsFromLayoutArray(Me, 

"myLayout", index) 

Dim btnStop as SKButton = views.Get("btnstop") 

btnStop.Tag = index ' or whatever can identify which item in the 

list this is. 

Next 

 

Each btnStop will now have a unique suffix number behind it.  So instead of btnStop, in the HTML 

the ids will be btnstop_1, btnstop_2 and btnstop_3. 

 

  



 46 BANano – Essentials 

 

BUT: BANano is smart enough so you can still use ONE event to handle the click: 

 
Private Sub btnStop_Click (event As BANanoEvent) 

 Dim btnStop As SKButton = Sender 

 Dim id As Int = btnStop.ID.Replace("btnstop_", "") 

 

End Sub 

 

Notice the use of B4Js Sender Object! 

 

By just using this line, we got the exact btnStop the user clicked on. 

 
Dim btnStop As SKButton = Sender 

 

Loading a layout must be done directly on a BANanoElement, not via a method or 

chaining. 

It is a Transpiler limitation. 

 

Example:  

 

Will work: 

 
Dim pageHolder As BANanoElement = body.Append(html).Get("#pageHolder")  

 

pageHolder.LoadLayout("MainLayout") 

 

' we put it first in a separate variable UserTab 

Dim UserTab As BANanoElement = SKTabs1.GetTabContents(0) 

' now we load the layout on this UserTab variable 

UserTab.LoadLayout("Users") 

 

Will NOT work: 

 
Dim pageHolder As BANanoElement = body.Append(html).Get("#pageHolder")  

 
pageHolder.LoadLayout("MainLayout") 

 
SKTabs1.GetTabContents(0).LoadLayout("Users") 

 

As SKTabs1.GetTabContents(0) is a method, that although it returns a BANanoElement, it will not 

work.  You will have to put SKTabs1.GetTabContents(0) in a separate BANanoElement variable 

first like in the above example. 

 

 

  



 47 BANano – Essentials 

 

7 BANanoPromise: Getting an answer in the future 
 

What is a Promise? 

 

This is probably the easiest way I found to explain what a Promise is: 

 

"Imagine you are a kid. Your mom promises you that she'll get you a new phone next week." 

 

You don't know if you will get that phone until next week. Your mom can either really buy you a 

brand-new phone, or stand you up and withhold the phone if she is not happy . 

 

That is a promise. A promise has 3 states. They are: 

 

Pending: You don't know if you will get that phone 

Fulfilled: Mom is happy, she buys you a brand-new phone 

Rejected: Your mom is not happy, she withholds the phone 

 

Promises have a peculiar way of executing: Once you have given them a task, they start doing it 

and the code following its construction will execute immediately, not waiting for the Promise to 

end.  This will become clear further in this chapter. (*) 

 

I will first go through the classic way of using a promise.  Then I will show you how to run them 

async with BANano.Await and end with how we can sometimes use the normal B4J Wait For too. 

The further you go into this chapter, the easier it will get.  I promise! 

7.1 Making a promise 

 

7.1.1 The structure of a promise  

 
' get all the files selected from the input #fu 

Dim UploadedFiles() As String = 

BANano.GetElement("#fu").GetField("files").Result 

 

Dim Result as Map 

Dim error as String 

 

Log("Start") '(1) 

 

Dim prom As BANanoPromise 

Prom.CallSub(Me, "UploadAllFiles", Array(UploadedFiles)) 

Prom.Then(Result) 

 Log("Success!") '(2) 

      For each key as String in Result.Keys 

          Log(key & "=" & Result.Get(key)) '(3) 

      Next  

Prom.Else(error) 

 Log("Oops, something went wrong!") '(4) 

Prom.Finally 

     Log("Always runs, not matter if it was success or an error")'(5)  

Prom.End 

 

Log("This code will not wait until the Promise is fulfilled!") '(6) 



 48 BANano – Essentials 

 

see (*) for the order of the logs:  So the output in the console will either be: 

 
Start '(1) 

This code will not wait until the Promise is fulfilled! '(6) 

Success! '(2) 

Key = value '(3) 

Always runs, not matter if it was success or an error '(5) 

 

Or if something went wrong: 

 
Start '(1) 

This code will not wait until the Promise is fulfilled! '(6) 

Oeps, something went wrong! '(4) 

Always runs, not matter if it was success or an error '(5) 

 

7.1.2 Breaking the code down 

 

We use the .CallSub() method to 'initialize' our BANanoPromise.  Here will call some method that 

will upload the files to our server.   

 

Such a method cannot simply Return a value because it can either be a success, or a 

failure.  For this we use the BANano.ReturnThen() and the BANano.ReturnElse() methods.  

The ReturnThen will go back to the .Then branch of the Promise, The ReturnElse() will go 

to the .Else branch of the Promise. 

 

If it was a success, we got back a map with all the URLs of the files we uploaded in the .Then() 

branch. 

 

If it failed (network not connected for example), we got the error back in the .Else() branch. 

 

In the Finally branch, we could do some clean-up for example.. 

 

7.1.3 The .Then() can also be a .ThenWait() and the .Else() be a .ElseWait().   

 

What!? 

 

Methods ending with the word Wait are consider special in BANano. The word Wait indicates to 

the transpiler that the called method is a Promise. This is partially so due to legacy, when real 

BANanoPromises did not exist yet in BANano.   

 

So, if we have a Method called MyMethodWait(), then it is actually transpiled in JavaScript to: 

 
this.MyMethodWait = async function() {} 

 

Instead, without Wait it would simply be MyMethod(): 

 
this.MyMethod = function() {} 

  



 49 BANano – Essentials 

 

The same goes for .ThenWait() and .ElseWait() transpiling to the JavaScript code: 
 

.then(async function(param) {} // the ThenWait 

 

.catch(async function() {} // the ElseWait 

 

When do we use them? 
 

Simply said, whenever we use a Wait inside the Then or Else branch.  Such a promise call can be 

another …Wait() method, but also e.g. the Sleep method. 

 

For Example: 

 
Dim prom as BANanoPromise 

prom.CallSub(Me, "MyMethodWait", Array("Alain")) 

prom.thenWait(result) ' uses ThenWait because we use Sleep in the branch 

 Sleep(1000) 

     Log(result) 

prom.end 

 

Sub MyMethodWait(Name as String) ' ends with Wait because we use Sleep 
    Sleep(2000) 

    BANano.ReturnThen("Hello " & Name)  

End Sub 

 

7.1.4 What is such a 'task'? 

 

A promise task can take many forms.  It mostly is something that can take some to perform, like 

getting you current GPS position, or uploading some files to the server,… 

 

Many of the Build-in Methods in BANano will return a BANanoPromise.  Examples are: 

 
BANano.GetFileAsDataURL 

BANano.GetFileAsJson 

BANano.GetFileAsText 

BANano.GetGeoPosition 

 

In this case you can simply do: 

 
Dim dataUrl As String 

Dim dataUrlProm As BANanoPromise = 

BANano.GetFileAsDataURL("./assets/B4X.jpg", Null) 

dataUrlProm.Then(dataUrl) 

Log(dataUrl) 

dataUrlProm.end 

 
Log("Done") 

 

Output: 

 
Done 

Some dataUrl 

  



 50 BANano – Essentials 

 

7.2 That was the long story. But BANano.Await! This can be simpler… 

 

As the chapters above describe, the flow of your code can get quite complex: when is what 

executed? 

 

Comes in the magic word: BANano.Await()! 

 

7.2.1 BANAno.Await to the rescue 

 

Instead of using the .Then() and .Else() flows, we can just simply wait for the answer before we 

continue in our code. 

 

Let's look back at our last example: 

 
Dim dataUrl As String 

Dim dataUrlProm As BANanoPromise = 

BANano.GetFileAsDataURL("./assets/B4X.jpg", Null) 

dataUrlProm.Then(dataUrl) 

Log(dataUrl) 

dataUrlProm.end 

 

Log("Done") 

 

Output: 

 
Done 

Some dataUrl 

 

That is not what one would expect when writing B4J code.  We would like the 'Done' to come 

AFTER logging the dataUrl. 

 

Well, let's wait for the dataUrlProm to finish its task: 

 
' the code will Wait here until the file is fetched 

Dim dataUrl as String = BANAno.Await( 

BANano.GetFileAsDataURL("./assets/B4X.jpg", Null)) 

 

Log(dataUrl) 

Log("Done") 

 

Now our output will be: 

 
Some dataUrl 

Done 

 

But how about the .Else() branch, I hear you say? 

 

Indeed, that information is lost.  Both BANano.ReturnThen() and BANano.ReturnElse() will be put 

in dataUrl. 

 

  



 51 BANano – Essentials 

 

We can resolve this by wrapping everything in a B4J Try .. Catch and throw an error: 

 
Dim Division as double 

Dim Error as String 

  
Try 

Division = BANAno.Await(SomeMethod(10,0)) 

Log(result) 

Catch(Error) 

 Log(Error) 

End Try 

 

Sub SomeMethod(a as int, b as int) As String 

 If b = 0 then 

        BANano.Throw("You cannot divide by zero!) 

     Else 

     Return a / b 

     End if           

End Sub 

 

7.2.2 Wait a minute: isn't that just B4Js Wait For? 

 

You are right! Since BANano version 7.35+ you can just sometimes use B4Js Wait For statement 

do this too.       

 

Example: 

 
Wait For (DoSum(10,20)) Complete(Result As Int) 

Log(Result) 

 

Sub DoSum(a As Int, b As Int) As ResumableSub 

    Return a + b 

End Sub 

 

When using BANano methods, you may have to write some small wrapper around something so it 

returns as ResumableSub 

 

Example: 
 

Wait For (GetFile("./assets/banano.jpg",Null)) complete (fileUrl As 

String) 

Log(fileUrl) 

 

Sub GetFile(url As String, options As BANanoFetchOptions) As ResumableSub 

 Return BANano.GetFileAsDataURL(url,options) 

End Sub 

 

So in such cases, it is probably easier to just use the BANano.Await method. 

  



 52 BANano – Essentials 

 

7.3 Then why do these different systems exist? 

 

They all have their reasons to be available.  The BANanoPromise with the .Then(), .Else() and 

.Finally() give a lot more information back than the Wait For and sometimes you just need that 

information.  The nesting of BANanoPromises is also very powerful. E.g., sometimes a Promise will 

give back an object and you want to use it in the next chained .Then().  An example of this will be 

demonstrated in BANanoFetch, which is a special BANanoPromise. 

 

Or you use BANanoPromise simply because it translates better from a JavaScript snippet you found 

on the internet to B4J code. 

  



 53 BANano – Essentials 

 

8 BANanoFetch: Making requests to the server 
 

BANanoFetch is a special BANanoPromise with some handy methods to handle the received 

data. 

 

JavaScript can send network requests to the server and load new information whenever it’s needed. 

For example, we can use a network request to: 

 

• Submit an order, 

• Load user information, 

• Receive latest updates from the server, 

• …etc. 

 

…And all of that without reloading the page! 

 

There’s an umbrella term “AJAX” (abbreviated Asynchronous JavaScript And XML) for network 

requests from JavaScript. We don’t have to use XML though: the term comes from old times, that’s 

why that word is there. You may have heard that term already. 

 

The basic syntax of a BANanoFetch is this: 

 
Dim fetch As BANanoFetch 

fetch.Initialize(URL, [BANanoFetchOptions]] 

fetch.Then(BANanoFetchResponse) 

 

fetch.Else(error) 

 

fetch.End 

 

URL: the URL to access 

BANanoFetchOptions: optional parameters: method, headers, etc… 

BANanoFetchResponse: the response from the Fetch call 

 

8.1 GET 

 

Without BANanoFetchOptions, this is a simple GET request, downloading the contents of the URL.  

 

The browser starts the request right away and returns a BANanoPromise that the calling code 

should use to get the result. 

 

Getting a response is usually a two-stage process. 

 

First, the BANanoPromise, returned by the BANanoFetch, resolves with an object of the built-

in BANanoFetchResponse class as soon as the server responds with headers. 

 

At this stage we can check HTTP status, to see whether it is successful or not, check headers, but 

don’t have the body yet. 

 

The promise rejects if the fetch was unable to make HTTP-request, e.g. network problems, or 

there’s no such site. Abnormal HTTP-statuses, such as 404 or 500 do not cause an error.  



 54 BANano – Essentials 

 

We can see the HTTP-status in BANanoFetchResponse properties: 

 

.Status – HTTP status code, e.g. 200. 

.OK – boolean, true if the HTTP status code is 200-299. 

 

For example: 

 
Dim fetch as BANanoFetch 

Dim response as BANanoFetchResponse 

 

fetch.Initialize(url, Null) ' a simple GET 

fetch.Then(response) 

 If response.OK then  'http status is 200-299 

  Dim Json as Map = BANano.Await(response.Json) 

  … 

 Else 

  Log("HTTP-Error: " & response.Status) 

 End If 

fetch.End 

 

Now, in stage 2 we do something with the response we've received. 

8.2 Handling the BANanoFetchResponse 

 

BANanoFetchResponse provides multiple BANanoPromise-based methods to access the body in 

various formats: 

 

• response.Text – read the response and return as text, 

• response.Json – parse the response as JSON, 

• response.FormData – return the response as FormData object, 

• response.Blob – return the response as Blob (binary data with type), 

• response.arrayBuffer() – return the response as ArrayBuffer (low-level representation of 

binary data), 

• additionally, response.body is a Readable Stream object, it allows you to read the body 

chunk-by-chunk, 

 

In the above example, we used the .Json method to receive the Json body which in this case we 

could simply put into a Map object and then work with it. 

 
Json = BANano.Await(response.json) 

Log(Json.Get("name")) 

 

We can choose only one body-reading method. 

If we’ve already got the response with response.text, then response.json won’t 

work, as the body content has already been processed. 

 

text = BANano.Await(response.Text) ' response body consumed 

parsed = BANano.await(response.Json) ' fails (already consumed) 

 

The response headers are available in a Map-like headers object in response.headers. 

 



 55 BANano – Essentials 

 

 

8.3 POST/PUT/DELETE/… (using BANanoFetchOptions) 

 

We set the method in BANanoFetchOptions.Method, the body in BANanoFetchOptions.Body. 

To set a request header in BANanoFetch, we can use the BANanoFetchOptions.Headers option.  

 
Dim fetch As BANanoFetch 

Dim fetchOptions As BANanoFetchOptions 

Dim fetchResponse As BANanoFetchResponse 

  

Dim data As Map 

Dim Error as String 

  

fetchOptions.Initialize 

fetchOptions.Method = "POST" 

fetchOptions.Body = $"{"guid": ${GUID}}"$ 

fetchOptions.Headers = CreateMap("Content-type": "application/json; 

charset=UTF-8", "api_key": APIKey) 

  

fetch.Initialize(APIUrl & "/v1/activatepwa", fetchOptions) 

fetch.Then(fetchResponse) 

 Log(fetchResponse) 

 fetch.Return(fetchResponse.Json) ' resolve it to the next .ThenWait 
fetch.ThenWait(data) 

 Log(data) 'ignore 

 Sleep(1000) 

 If data.get("status") = "OK" Then 

  … 

 End If 

fetch.ElseWait(error) 

 Log(error)  

fetch.End 

 

There’s a list of forbidden http headers that we can’t set: 

• Accept-Charset, Accept-Encoding 

• Access-Control-Request-Headers 

• Access-Control-Request-Method 

• Connection 

• Content-Length 

• Cookie, Cookie2 

• Date 

• DNT 

• Expect 

• Host 

• Keep-Alive 

• Origin 

• Referer 

• TE 

• Trailer 

• Transfer-Encoding 



 56 BANano – Essentials 

 
• Upgrade 

• Via 

• Proxy-* 

• Sec-* 

 

These headers ensure proper and safe HTTP, so they are controlled exclusively by the browser. 

 

8.4 Shortcut methods 

 

BANano has a couple of shortcut methods that can help you quickly to do some communication 

e.g. with your jServer. 

 
BANano.GetFileAsArrayBuffer 

BANano.GetFileAsDataURL 

BANano.GetFileAsJson 

BANano.GetFileAsText 

 

These methods can be used as simple as: 

 
Dim DataURL as String 

DataURL = BANano.Await(BANano.GetFileAsDataURL("./assets/B4X.jpg", Null) 

 

 

 

 

 

 

 

  



 57 BANano – Essentials 

 

9 The BANano Object: One Object to rule them all! 
 

Now that we understand de essential BANano objects like BANanoObject to access JavaScript 

and BANanoElement to access the browser DOM HTML it's time to talk about that master of 

this all: the BANano Object itself. 

 

The BANano Object is a set of methods to assist in writing Web code in B4J.  It  also contains the 

Transpiler.  Depending on where it used, it has another function. 

 

9.1 Using BANano in AppStart 

 

As said, this is the only method in your BANano Web App that is not transpiled and that will 

actually run in the B4J IDE as normal B4J code. 

 

So this is the place where we give directions to the Transpiler on how to build our Web Project. 

 

A typical definition for a PWA may look something like this: 

 
Sub AppStart (Form1 As Form, Args() As String) 

 ' With this little snippet, the new B4J 9.30 logs with jump are 

activated 

 #if Debug 

 ' MUST be literally this line if you want to use the B4J Logs jump 

to code feature! 

  Log("BANanoLOGS") 

 #End if 

  

 ' some general settings like the name of your PWA 

 BANano.Initialize("BANano", "BANanoSkeleton",DateTime.Now) 

 BANano.Header.Title="BANano Skeleton" 

' DateTime.Now is to make sure our app is reloaded on ReBuild 

 BANano.JAVASCRIPT_NAME = "app" & DateTime.Now & ".js" 

 ' a PWA must have a service worker.  Will be built automatically 

caching everything used in your Web App 

 BANano.SERVICEWORKER_NAME = "service-worker.js" 

  

' some directives for the Transpiler 

 BANano.TranspilerOptions.MergeAllCSSFiles = True 

 BANano.TranspilerOptions.MergeAllJavascriptFiles = True 

 BANano.TranspilerOptions.RemoveDeadCode = True 

 BANano.TranspilerOptions.ShowWarningDeadCode = True 

 BANano.TranspilerOptions.EnableLiveCodeSwapping = True 

  

' this line makes sure our Web App becomes a PWA 

#if Release       

 BANano.TranspilerOptions.UseServiceWorkerWithUpdateMessage(Tru

e, "#26AE60", "Update available", "Click here to update the app to 

the latest version") 

 #end if  

  

 ' optional: if your WebApp is not in the root 

 ' BANano.TranspilerOptions.SetPWAStartUrl("myPWA/index.html") 

 BANano.Header.BackgroundColor = "#1e1e1e" 

 



 58 BANano – Essentials 

 
 

 ' additional JavaScript and CSS files we want to include 

' BANano.Header.AddJavascriptFile("jsstore.min.js") 

 

 ' settings needed for the PWA app icons, splash screens, etc… 

 BANano.Header.AddMSTileIcon("mstile-150x150.png", "150x150") 

 BANano.Header.MSTileColor = "#ffc40d" 

  

 BANano.Header.AddManifestIcon("android-chrome-192x192.png", 

"192x192") 

 BANano.Header.AddManifestIcon("android-chrome-512x512.png", 

"512x512") 

 BANano.Header.SetAndroidMaskIcon("maskable_icon.png", "731x731") 

 BANano.Header.MaskIconColor = "#1e1e1e" 

  

 BANano.Header.AddAppleTouchIcon("apple-touch-icon.png", "") 

 BANano.Header.SetAppleMaskIcon("safari.png") 

 BANano.Header.AddAppleTouchStartupImage("iphone5_splash.png", 

"320px", "568px", "2") 

 BANano.Header.AddAppleTouchStartupImage("iphone6_splash.png", 

"375px", "667px", "2") 

 BANano.Header.AddAppleTouchStartupImage("iphoneplus_splash.png", 

"621px", "1104px", "3") 

 BANano.Header.AddAppleTouchStartupImage("iphonex_splash.png", 

"375px", "812px", "3") 

 BANano.Header.AddAppleTouchStartupImage("iphonexr_splash.png", 

"414px", "896px", "2") 

 BANano.Header.AddAppleTouchStartupImage("iphonexsmax_splash.png", 

"414px", "896px", "3") 

 BANano.Header.AddAppleTouchStartupImage("ipad_splash.png", "768px", 

"1024px", "2") 

 BANano.Header.AddAppleTouchStartupImage("ipadpro1_splash.png", 

"834px", "1112px", "2") 

 BANano.Header.AddAppleTouchStartupImage("ipadpro2_splash.png", 

"834px", "1194px", "2") 

 BANano.Header.AddAppleTouchStartupImage("ipadpro3_splash.png", 

"1024px", "1366px", "2") 

   

 BANano.Header.AddFavicon("favicon-16x16.png", "16x16") 

 BANano.Header.AddFavicon("favicon-32x32.png", "32x32") 

   

 ' write the theme 

 SKTools.WriteTheme 

  

 ' start the actual build 

 BANano.Build(File.DirApp) 

  

 ' stop running. We do not need the .jar file running anymore 

 ' in release mode 

 #if Release 

  ExitApplication   

 #End if 

End Sub 

  



 59 BANano – Essentials 

 

9.1.1 TranspilerOptions 

 

Transpiler Options are directives you can give the BANano Transpiler on how to build your final 

Web App. 

 

You can find the full list of options in the Quick Reference, but here are some commonly used 

ones: 

 

DoNotDeleteFileOnCompilation (fullPath As String) 
 

Prevents the Transpiler from deleting this file. Useful e.g. for assets that are not in the /Files folder. 

 

DoNotDeleteFolderOnCompilation (fullPath As String) 

 

Prevents the Transpiler from deleting this folder. Useful e.g. for assets that are not in the /Files 

folder. 

 

ExcludePWACachingUrlContaining (str As String) 

 

URL containing the given string will not be cached by the PWA Service Worker. Case sensitive. 

 

If for example you dynamically load some json files from the https://mydomain.com/pwalists path, 

then you can exclude them from being cached with: 

 
BANano.TranspilerOptions.ExcludePWACachingUrlContaining("pwalists") 

 

Of course be careful that is unique enough, so it does not interfere with files that need to be 

cached! 

 

IgnoreB4JLibrary (libName As String) 

 

A B4J library the BANano Transpiler should ignore. (the library itself, not the use of it!) 

 

By default, the following are ignored: 

 
BANano 

BANanoServer 

jCore 

jFx 

json 

jMQTT 

jServer 

JavaObject 

ABJJWT 

 

RedirectOutput (dir As String, fileName As String) 

 

Redirects the logs to a file. Must be set in AppStart 

 

https://mydomain.com/pwalist


 60 BANano – Essentials 

 

SetPWAStartUrl (StartURL As String) 

 
Sets the Start URL in the manifest.json file for a PWA. Default is HTML_NAME 

 

e.g. BANano.TranspilerOptions.SetPWAStartUrl("PWA/index.html") 

 

UseServiceWorkerWithUpdateMessage (bool As Boolean, 

UpdateColor As String, UpdateTitle As String, UpdateMessage As String) 

 

Use a service worker where an update toast is showed if an update is available. 

The user can then click the toast to do the update. 

 

This is a cool build-in system that will update the users PWA if a new version is uploaded to the 

server. 

 

EnableLiveCodeSwapping As Boolean 

 

Enable Live Code Swapping and watch live changes made in the B4J source code. 

On Save, the changed B4J code is Transpiled again and reloaded by the browser. 

 

Default = true 

 

MergeAllCSSFiles As Boolean 

 

Must be set before Build(). Only used when in Release mode. 

 

MergeAllJavascriptFiles As Boolean 

 

Must be set before Build(). Only used when in Release mode. 

 

RemoveDeadCode As Boolean 

 

Build-in Tree Shaking. Only works in Build 

 

The transpiler does not GENERATE dead code (never used). It does NOT remove the B4J code! 

 

Use ShowWarningDeadCode beforehand to check if the transpiler is correct. 

 

Methods with a _ in their name are always considered to be needed. 

 

It is advised to set this to TRUE! It can make your final app al lot smaller!  

You can use  'ignoredeadcode after a method name (like the 'ignore in B4J) to tell the 

transpiler not remove a certain method. 

  



 61 BANano – Essentials 

 

ShowWarningDeadCode As Boolean 

 

Only works in Build 

 

Shows a warning in the log if the transpiler suspects some code is dead (never used). 

This is handy, especially in the final stage of development to remove code that is never used. 

 

Methods with a _ in their name are always considered to be needed. 

 

  



 62 BANano – Essentials 

 

9.1.2 BANanoHeader 

 

Use the BANano.Header to set common html meta data and add css/javascript files. 

 

Can only be used in AppStart()! 

 

In HTML, the <head> element is a container for metadata (data about data) and is placed 

between the <html> tag and the <body> tag. 

 

Metadata is data about the HTML document. Metadata is not displayed. 

 

Metadata typically define the document title, character set, viewport, styles, scripts, and other meta 

information. 

 

Examples of meta data: 

 
BANano.Header.Title="Activity" 

BANano.Header.Author = "Alain Bailleul" 

BANano.Header.Description = "Activity OneTwo" 

BANano.Header.Charset = "utf-8" 

BANano.Header.Keywords = "HTML, CSS, JavaScript" 

9.1.2.1 Loading external CSS and JavaScript files 

 

Here we can also load additional Javascript and CSS files. We have a couple of methods we can use. 

Mostly you will only need these two: 

 

BANano.Header.AddJavascriptFile (AssetFileNameOrURL As String) 

 

Load an extra javascript file. If it is an asset file it will be copied to the scripts folder. 

For locale files (not URLs), you can use the * wildcard 

 

Examples: 

 
' local asset 

BANano.Header.AddJavascriptFile("BANanoSkeleton.datepicker.min.js") 

' from an URL 

BANano.Header.AddJavascriptFile("https://unpkg.com/leaflet@1.3.4/dist/leaflet.js

") 

 

BANano.Header.AddCSSFile (AssetFileNameOrURL As String) 

 

Load an extra css file. If it is an asset file it will be copied to the styles folder. 

For locale files (not URLs), you can use the * wildcard 

 

Examples: 

 
' local asset 

BANano.Header.AddCSSFile("BANanoSkeleton.datepicker.min.css") 

' from an URL 

BANano.Header.AddCSSFile("https://unpkg.com/leaflet@1.3.4/dist/leaflet.css") 



 63 BANano – Essentials 

 

9.1.2.2 Loading assets… Later 

 

Sometimes these files need to be loaded differently.  For example, we have some Javascript or CSS 

file that aren't needed when loading the Web App as it is only used further into your program.  We 

will only load them when needed with the BANano.AssetsLoad… methods. 

 

Note:  You will not often need the below methods.  They are only used in specific 

situations, e.g. you do only want to load certain assets if the user requests them.  The 

AssetsLoadWait method can be handy for loading a bundle of images later, but are not 

immediately needed. 

 

For this, you can use the …ForLater versions of the above methods: 

 

BANano.Header.AddJavascriptFileForLater (AssetFileNameOrURL As String) 

 

BANano.Header.AddCSSFileForLater (AssetFileNameOrURL As String) 

 

Example: 

 
' in Sub AppStart() 

BANano.Header.AddCSSFileForLater("mini-nord.min.css") 

... 

 

' in Sub BANano_Ready() 

Dim pathsNotFound() as String 

If BANano.AssetsIsDefined("Loader") = False then 

    pathsNotFound = BANano.AssetsLoadWait("Loader", Array("./assets/1.jpg", 

"./styles/mini-nord.min.css")) 

    If BANano.IsNull(pathsNotFound) = False Then 

       Log("Doh! Loader has not been loaded completely!") 

       For Each path As String In pathsNotFound 

          Log(path) 

       Next 

    Else 

       Log("Loader has been loaded!") 

    End If 

end if 

 

Here we have defined an Asset bundle "Loader".  It contains an image and a css file.  CSS and 

JavaScript files need to be added in appStart with the …ForLater methods.  Other assets, like 

images, do not have to be defined in the Header. 

 

When we need them, we check if we haven't already loaded the bundle with the AssetsIsDefined 

method. If not, then we load them with the AssetsLoadWait method.  This method will return an 

Array of Strings containing the paths of the assets it could not load, of Null if they are all loaded. 

 

  



 64 BANano – Essentials 

 

9.1.2.3 Loading modern ES6 modules 

 

Another special Load system is for ES6 modules.   

JavaScript programs started off pretty small — most of its usage in the early days was to do isolated 
scripting tasks, providing a bit of interactivity to your web pages where needed, so large scripts 
were generally not needed. Fast forward a few years and we now have complete applications being 

run in browsers with a lot of JavaScript, as well as JavaScript being used in other contexts (Node.js, 

for example). 

It has therefore made sense in recent years to start thinking about providing mechanisms for 
splitting JavaScript programs up into separate modules that can be imported when needed. Node.js 
has had this ability for a long time, and there are a number of JavaScript libraries and frameworks 

that enable module usage (for example, other CommonJS and AMD-based module systems 

like RequireJS. 

The good news is that modern browsers have started to support module functionality natively. This 
can only be a good thing — browsers can optimize loading of modules, making it more efficient than 
having to use a library and do all of that extra client-side processing and extra round trips. 

To define and load such modules, BANano provides you with some easy to use methods to define 
such modules. They are similar to the ones described above, but have ES6 in their name: 

BANano.Header.AddJavascriptES6File (AssetFileName As String) 

 

Load an extra ES6 javascript file. It must be an asset file and cannot be an URL. 

 

You can use the * wildcard 

 

BANano.Header.AddJavascriptES6FileForLater (AssetFileName As String) 

 

Load an extra ES6 javascript file. It must be an asset file and cannot be an URL. 

 

This asset will not be loaded at loading the html file, but you will have to do it 'Later' using the 

BANano.AssetsLoad... methods 

 

You can use the * wildcard 

 

  

https://developer.mozilla.org/en-US/docs/Glossary/Node.js
https://en.wikipedia.org/wiki/CommonJS
https://github.com/amdjs/amdjs-api/blob/master/AMD.md
https://requirejs.org/


 65 BANano – Essentials 

 

To actually use them, you will need to import those files with: 

 

BANano.Import (moduleName As String) As BANanoPromise 
 

Loads the complete file.  Used to import bindings which are exported by another module.  

   

Example:  

 
Dim res as BANanoObject 

Dim prom as BANanoPromise = BANano.Import("myES6Module") 

prom.Then(res) 

prom.RunMethod("ES6Method", Array(1,2)) 

prom.End 

 

BANano.ImportWait (moduleName As String) As BANanoObject 
 

Same as above, but the promise is already resolved. 

BANano.ImportRaw (importStatement As String) 

 

Literally takes over the importStatement.  This can be used to only load certain methods from a 

module. 

 

Example: 

 
BANano.ImportRaw("import { export1 , export2 as alias2} from 'module-name'") 

 

Will be Transpiled in JavaScript to: 

import { export1 , export2 as alias2} from 'module-name' 

See for more info on raw imports: 

 
https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Statements/import 

 

  

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import


 66 BANano – Essentials 

 

9.1.2.4 Loading JavaScript files in the Service Worker of the PWA 

 

In some cases you need some extra JavaScript files that will be used in the PWA's service worker 

only. 

 

IMPORTANT: such a javascript file can NOT use window or document or any other 

reference to the DOM as a Service Worker cannot access this! 

 

These have to be defined specifically with the SW methods: 

 

BANano.Header.AddJavascriptFileSW (AssetFileNameOrURL As String) 

 

Does the same a AddJavascriptFile() but will write it also in the ImportScripts() method in the 

Service Worker file. 

 

If it is a javascript file used in a BANanoLibrary, it MUST be added in the final app explicitly! It 

cannot be done in the library. 

 

These javascript files will NOT be merged! 

 

BANano.Header.AddJavascriptFileForLaterSW (AssetFileNameOrURL As  

String) 
 

Does the same a AddJavascriptFileForLater() but will write it also in the ImportScripts() method in 

the Service Worker file. 

 

If it is a javascript file used in a BANanoLibrary, it MUST be added in the final app explicitly! It 

cannot be done in the library. 

 

These javascript files will NOT be merged! 

 

The JavaScript importScripts method synchronously imports one or more scripts into the worker's 

scope. 

 

 

 

 

 

 

 

  



 67 BANano – Essentials 

 

9.1.2.5 PWA Specific Assets 

 

It is also the place where you define PWA info, like the manifest and images that need to be used. 

 

Example of PWA specific meta data: 

 
BANano.Header.BackgroundColor = "#ff8800" 

    

BANano.Header.AddMSTileIcon("mstile-150x150.png", "150x150") 

BANano.Header.MSTileColor = "#ff8800" 

  

BANano.Header.AddManifestIcon("android-chrome-192x192.png", "192x192") 

BANano.Header.AddManifestIcon("android-chrome-512x512.png", "512x512") 

BANano.Header.SetAndroidMaskIcon("maskable_icon3.png", "731x731") 

BANano.Header.MaskIconColor = "#ff8800" 

  

BANano.Header.AddAppleTouchIcon("apple-touch-icon.png", "")  

BANano.Header.SetAppleMaskIcon("safari.svg")  

BANano.Header.AddAppleTouchStartupImage("iphone5_splash.png", "320px", "568px", 

"2") 

BANano.Header.AddAppleTouchStartupImage("iphone6_splash.png", "375px", "667px", 

"2") 

BANano.Header.AddAppleTouchStartupImage("iphoneplus_splash.png", "621px", 

"1104px", "3") 

BANano.Header.AddAppleTouchStartupImage("iphonex_splash.png", "375px", "812px", 

"3") 

BANano.Header.AddAppleTouchStartupImage("iphonexr_splash.png", "414px", "896px", 

"2") 

BANano.Header.AddAppleTouchStartupImage("iphonexsmax_splash.png", "414px", 

"896px", "3") 

BANano.Header.AddAppleTouchStartupImage("ipad_splash.png", "768px", "1024px", 

"2") 

BANano.Header.AddAppleTouchStartupImage("ipadpro1_splash.png", "834px", 

"1112px", "2") 

BANano.Header.AddAppleTouchStartupImage("ipadpro2_splash.png", "834px", 

"1194px", "2") 

BANano.Header.AddAppleTouchStartupImage("ipadpro3_splash.png", "1024px", 

"1366px", "2") 

   

BANano.Header.AddFavicon("favicon-16x16.png", "16x16") 

BANano.Header.AddFavicon("favicon-32x32.png", "32x32") 

 

Some websites to help you create these assets: 

 

https://realfavicongenerator.net 

 

https://favicon.io/favicon-converter/ 

 

https://appsco.pe/developer/splash-screens 

 

 

 

  

https://realfavicongenerator.net/
https://favicon.io/favicon-converter/
https://appsco.pe/developer/splash-screens


 68 BANano – Essentials 

 

9.1.3 Transpiling and Building 

 

BANano can build (Transpile) for several different purposes: it can generate the final PWA, make a 

BANanoLibrary or be part of a BANano Websockets project.  It can even be used to make 

BANanoLibraries for my other library ABMaterial. 

 

These commands can only be done in the AppStart method! 

9.1.3.1 Building a PWA 

 

This can be a stand-alone PWA, or a PWA using BANanoFetch calls to a BANanoServer REST API 

project. 

 

EVERYTHING, except what is in the AppStart() method will be transpiled to JavaScript, 

including the BANanoLibraries you used in the project 

 

To do this, we use the BANano.Build method. The parameter is the full path where it has to be 

Transpiled to. 

 
' start the actual build 

BANano.Build(File.DirApp) 

 

In the log, you will see BANano at work, and will give feedback, like mistakes in the code or where 

optimizations can be done. Check this log carefully! 

 

This is an example of a typical one in Debug Mode: 

 

Waiting for debugger to connect... 

Program started. 

BANanoLOGS 

Reading B4J INI in C:\Users\pi\AppData\Roaming\Anywhere Software\B4J to find Additional Libraries folder... 

Found Additional Libraries folder: K:\B4J\AddLibraries 

Starting to transpile... 

Building K:\SourceCode\testPWA\Objects\BANanoSkeleton\scripts\app1645613014830.js 

[WARNING]: RemoveDeadCode is disabled if EnableLiveCodeSwapping = true 

Merging CSS files ignored.  Only applicable for Build in Release mode. 

Merging Javascript files ignored.  Only applicable for Build in Release mode. 

Loading layout mainlayout... 

Loading layout menulayout... 

Loading layout welcomemodallayout... 

Loading layout welcomepagelayout... 

Processing b4xlib: bananoskeleton 

Jump Logs activated: 7 

The method Await will not work in old browsers! 

The method Await will not work in old browsers! 

The method Await will not work in old browsers! 

The method Await will not work in old browsers! 

The method GetGeoPosition will not work in old browsers! 

The method OpenWait will not work in old browsers! 

The method ExecuteWait will not work in old browsers! 

The method OpenWait will not work in old browsers! 



 69 BANano – Essentials 

 

The method ExecuteWait will not work in old browsers! 

The method Await will not work in old browsers! 

The method Await will not work in old browsers! 

The method ExecuteWait will not work in old browsers! 

Adding Layout mainlayout used by testpwa 

Adding Layout welcomemodallayout used by testpwa 

Adding Layout menulayout used by testpwa 

BANanoMediaQueries will not work in old browsers! 

Adding Mediaquerycode: bigger992px 

BANanoMediaQueries will not work in old browsers! 

Adding Mediaquerycode: smaller992px 

Adding Layout welcomepagelayout used by testpwa 

The method Await will not work in old browsers! 

The method ExecuteWait will not work in old browsers! 

Adding Layout welcomepagelayout used by testpwa 

---------------------- OPTIMISATION METHODS ----------------------- 

OPTIMISATION: The METHOD reset in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD stopwait in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD turnontorch in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD turnofftorch in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD isscanning in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD supportstorch in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD addtoparent in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD remove in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD trigger in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD setclasses in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD getclasses in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD setstyle in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD getstyle in (MODULE: SKBarcodeScanner) appears to be unused 

OPTIMISATION: The METHOD getelement in (MODULE: SKColorPicker) appears to be unused 

OPTIMISATION: The METHOD getid in (MODULE: SKColorPicker) appears to be unused 

OPTIMISATION: The METHOD addtoparent in (MODULE: SKColorPicker) appears to be unused 

OPTIMISATION: The METHOD remove in (MODULE: SKColorPicker) appears to be unused 

OPTIMISATION: The METHOD trigger in (MODULE: SKColorPicker) appears to be unused 

OPTIMISATION: The METHOD setclasses in (MODULE: SKColorPicker) appears to be unused 

OPTIMISATION: 583 more methods appear to be unused. See OPTIMISATIONS.txt 

---------------------- OPTIMISATION CLASSES ----------------------- 

OPTIMISATION: The CLASS: SKBarcodeScanner appears to be unused 

OPTIMISATION: The CLASS: SKColorPicker appears to be unused 

OPTIMISATION: The CLASS: SKColumn appears to be unused 

OPTIMISATION: The CLASS: SKCombo appears to be unused 

OPTIMISATION: The CLASS: SKDatePicker appears to be unused 

OPTIMISATION: The CLASS: SKDivider appears to be unused 

OPTIMISATION: The CLASS: SKDropButton appears to be unused 

OPTIMISATION: The CLASS: SKEditor appears to be unused 

OPTIMISATION: The CLASS: SKFloatingButton appears to be unused 

OPTIMISATION: The CLASS: SKBreadcrumbs appears to be unused 

OPTIMISATION: The CLASS: SKList appears to be unused 

OPTIMISATION: The CLASS: SKMobileNav appears to be unused 

OPTIMISATION: The CLASS: SKNavigationBar appears to be unused 

OPTIMISATION: The CLASS: SKPagination appears to be unused 

OPTIMISATION: The CLASS: SKQRCode appears to be unused 

OPTIMISATION: The CLASS: SKRadio appears to be unused 

OPTIMISATION: The CLASS: SKRange appears to be unused 

OPTIMISATION: The CLASS: SKSignaturePad appears to be unused 



 70 BANano – Essentials 

 

OPTIMISATION: The CLASS: SKSwitch appears to be unused 

OPTIMISATION: 11 more classes appear to be unused. See OPTIMISATIONS.txt 

The method startwait will not work in old browsers! 

The method stopwait will not work in old browsers! 

The method startwait will not work in old browsers! 

The method stopwait will not work in old browsers! 

The method getlocation will not work in old browsers! 

The method insertwait will not work in old browsers! 

The method welcomepagebutton_click will not work in old browsers! 

Copying CSS files to WebApp assets... 

Copying Javascript files to WebApp assets... 

Building K:\SourceCode\testPWA\Objects\BANanoSkeleton\index.html 

Done! Live Code Swapping is active... 

 

9.1.3.2 Building a BANanoLibrary 

 

You can easily split up your project by using BANanoLibraries.  A BANanoLibrary is just a simple 

.b4xlib file that you can include in your projects. 

 

EVERYTHING, except what is in the Main module will added to the .b4xlib. 

 

This is especially handy to test some things in your library.  So you can use the BANano_Ready() 

method to run some tests in your library and you can leave it in there, as this whole module will be 

ignored when making the final library. 

 

To make a BANanoLibrary, simply call: 

 
' start the build 

#if release 

 BANano.BuildAsB4Xlib("7.35") 

#else 

 BANano.Build(File.DirApp) 

#end if 

 

We use the normal Build() to test our library as this command will run the BANano_Ready method. 

 

The log will look somewhat different to a PWA in Release Mode: 

 

Reading B4J INI in C:\Users\pi\AppData\Roaming\Anywhere Software\B4J to find Additional Libraries folder... 

Found Additional Libraries folder: K:\B4J\AddLibraries 

Starting to transpile... 

Building K:\B4J\AddLibraries\BANanoSkeleton.b4xlib 

[WARNING]: [SKBarcodeScanner,startwait: 151] The method Await will not work in old browsers! 

[WARNING]: [SKBarcodeScanner,startwait: 152] The method Await will not work in old browsers! 

[WARNING]: [SKTakePicture,startwait: 216] The method Await will not work in old browsers! 

[WARNING]: [SKTools,getlocation: 94] The method Await will not work in old browsers! 

[WARNING]: [SKTools,getlocation: 94] The method GetGeoPosition will not work in old browsers! 

Building K:\B4J\AddLibraries\BANanoSkeleton\BANanoSkeleton.dependsOn 

---------------------------------------------------------- 

K:\B4J\AddLibraries/BANanoSkeleton.b4xlib created! 

---------------------------------------------------------- 

 



 71 BANano – Essentials 

 

 

9.1.3.3 Building a BANanoServer Websocket project 

 

See the chapters on BANanoServer on how they are made.  It is enough to know here that a 

BANanoServer WebSocket project consists of SERVER, BROWSER and SHARED classes. 

 

EVERY class with its name starting with BROWSER or SHARED will be transpiled to 

JavaScript, including all BANanoLibraries used in the project. 

 

To build such a project use: 

 
' transpile all the BANano b4J code to javascript 

Server.BANano.BuildForServer(Server.OutputFolder) 

 

This will do two things: it will generate the PWA, but also the server .jar file.  You can the upload 

this .jar file and its www folder to your VPN like a normal B4J jServer project.  

 

For more info on how to deploy a jServer .jar file, see the B4J forum. 

 

As a BANanoServer REST API project is just a normal jServer project, the same applies. 

 

9.1.3.4 Building a BANanoLibrary for ABMaterial 

 

This is the same as a normal BANanoLibrary, but the .b4xlib file has to build slightly different. 

 

You use the BANano.BuildAsB4XLibForABM method instead. 

 
BANano.BuildAsB4XlibForABM("D:\MyProject\MyABMProject\Objects\www","1.15") 

 

The first parameter is the www folder of your ABMaterial project. 

 

Will Build the transpiled files to your Additional Libraries folder as a B4XLib for ABMaterial (prefix: 

ABMBanano). 

 

You do not need to compile your Library with the B4J IDE. 

 

If ABMStaticFilesFolder in ABMaterial (the /www folder) is set, then the assets will be automatically 

unzipped in this folder. 

  



 72 BANano – Essentials 

 

9.1.3.5 Tree Shaking (removing dead code) 

 

BANano has the ability to remove dead (unused) code from your final PWA.  It goes a lot further 

than other packing tools, as it can even remove single methods within a module/class that is not 

used in the final PWA.  Most packing tools can only go to the level of removing a full class. 

 

This means as soon as you use one method from a class, those packagers will include the complete 

class.  BANano will strip those not used methods from the class and will only include a small 

fraction of the total class in your PWA. 

 

The transpiler does not GENERATE dead code (never used). It does NOT remove the B4J code! 

 

Methods with a _ in their name are always considered to be needed. 

 

This can be done by the following Transpiler Options switches: 

 
BANano.TranspilerOptions.ShowWarningDeadCode = True 

BANano.TranspilerOptions.RemoveDeadCode = True 

 

The first one will only log what could be removed as it wasn't used in the final PWA.  The second 

one will actually remove all methods and classes you did not use in your project.   



 73 BANano – Essentials 

 

9.2 Using BANano in the WebApp code 

 

The BANano object contains a lot of methods that are typical for JavaScript and have no real 

equivalent in B4J. 

 

We have already met such a method, the BANano.Await method.  The full list is in the quick 

reference. 

 

If you are searching for a typical JavaScript command, it is almost certain you will find its B4J 

equivalent in the BANano object. 

 

9.2.1 BANano Extended Property Objects 

 

These are property objects that cannot be initialized, but that provide additional methods and 

properties typical for a certain object.   

 

BANanoConsole 

BANanoWindow 

BANanoHistory 

BANanoLocation 

BANanoNavigator 

BANanoScreen 

 

You can work with those by accessing their property on the BANano object. E.g. 

 
BANano.Console.Info("myMessage") 

Log(BANano.Window.InnerWidth) 

Log(BANano.Screen.Height) 

 
' this is NOT a Geo location, but the structure of the URL! 

Log(BANano.Location.Host) 

 

For a Geo Location and Position you can use the BANanoGeoLocation object: 

 

Example:  

 
Dim pos As BANanoGeoPosition 

Dim error As Int 

 

BANano.GeoLocation.GetCurrentPosition(BANano.CallBack(Me, 

"HandleGotPosition", Array(pos)), BANano.CallBack(Me, 

"HandleErrorPosition", Array(error))) 

… 

 

Sub HandleGotPostion(pos As BANanoGeoPosition) 

 Log(pos.Latitude & "-" & pos.Longitude) 

End Sub 

 

Sub HandleErrorPosition(error As Int) 

 Log(error) 

End Sub 

  



 74 BANano – Essentials 

 

You can get the current position easier with the shortcut 

 
Dim pos as BANanoGeoPosition = 

BANano.Await(BANano.GetGeoPosition(CreateMap("enableHighAccuracy": true, 

"timeout": 5000, "maximumAge": 0)) 

 
Log(pos.Latitude & "-" & pos.Longitude) 

  



 75 BANano – Essentials 

 

10 Saving data in the browser 
 

We can use several ways to save data in the user's browser.  How you use it largely depends on its 

purpose.  It can be done with the classic Cookies, in LocalStorage or SessionStorage and with the 

build-in BANanoSQL that mimics a real Database with SQL Queries! 

 

A special case is the CacheStorage. 

 

10.1 Cookies 

Cookies are data, stored in small text files, on your computer. 

When a web server has sent a web page to a browser, the connection is shut down, and the server 

forgets everything about the user. 

Cookies were invented to solve the problem "how to remember information about the user": 

• When a user visits a web page, his/her name can be stored in a cookie. 

• Next time the user visits the page, the cookie "remembers" his/her name. 

Cookies are saved in name-value pairs like: activeUser = Alain Bailleul 

When a browser requests a web page from a server, cookies belonging to the page are added to 

the request. This way the server gets the necessary data to "remember" information about users. 

 

In BANano you have a couple of methods to assist you in managing the cookies: 

 

BANano.SetCookie (name As String, value As String, jsonOptions As String) 

 
jsonOptions: expires, path, domain, secure 

 

example: expires 7 days from now 

 
BANano.SetCookie("mycookie", "myvalue", "{expires: 7, path: '', domain: 

'mydomain.com', secure: 'true'}") 

 

BANano.GetCookie (name As String) As String 

 

Returns a the value of the cookie 

 

BANano.RemoveCookie (name As String, jsonOptions As String) 

 

Deletes a cookie. 

 

IMPORTANT! When deleting a cookie and you're not relying on the default attributes, 

you must pass the exact same path and domain attributes that were used to set the cookie 

 
BANano.RemoveCookie("mycookie", "{path: '', domain: 'mydomain.com'}") 



 76 BANano – Essentials 

 

10.2 LocalStorage and SessionStorage 

 

The localStorage and sessionStorage objects, part of the web storage API, are two great tools for 

saving key/value pairs locally. Using localStorage and sessionStorage for storage is an alternative to 

using cookies and there are some advantages: 

 

• The data is saved locally only and can’t be read by the server, which eliminates the security 

issue that cookies present. 

• It allows for much more data to be saved (10mb for most browsers). 

• The syntax is straightforward. 

 

It’s also supported in all modern browsers, so you can use it today without an issue. Cookies are 

still useful, especially when it comes to authentication, but there are times when 

using localStorage or sessionStorage may be a better alternative. 

 

localStorage and sessionStorage are almost identical and have the same API. The difference is 

that with sessionStorage, the data is persisted only until the window or tab is closed. 

With localStorage, the data is persisted until the user manually clears the browser cache or until 

your web app clears the data.  

 

With this knowledge, you can now create, read, and update key/value pairs in localStorage. 

 

BANano has two pairs of methods. The original ones (without a 2 at the end) are still in 

there and use the JavaScript library Vault.  The ones with a 2 at the end are the native 

ones and it is preferable to use those.  I will only explain the ones with a 2 at the end. 

 

The syntax for both Local as SessionStorage are the same. Just replace the word Local by the word 

Session. 

 

BANano.SetLocalStorage2 (key As String, value As Object) 

 
You can create entries for the localStorage object by using the SetLocalStorage2() method. 

The SetLocalStorage2() method takes two arguments, the key and corresponding value: 

 
BANano.SetLocalStorage2("otwprojectnew", "Last Project") 

 

BANano.GetLocalStorage2 (key As String) As Object 

 
To read entries, use the GetLocalStorage2() method. The GetLocalStorage2 () method takes one 

argument which must be the key. This function will return the corresponding value as a string: 

 
Dim LastProject as String = BANano.GetLocalStorage2("otwprojectnew") 

  



 77 BANano – Essentials 

 

BANano.RemoveLocalStorage2 (key As String) 

 
You can delete an entry with the RemoveLocalStorage2() method. 

The RemoveLocalStorage2() method takes one argument which will be a key of 

the localStorage object: 

 
BANano.RemoveLocalStorage2("otwprojectnew") 

 

BANano.EmptyLocalStorage2 (key As String) 

 
You can also clear all items in localStorage. This can be done with 

the EmptyLocalStorage2() method. Here’s how to clear everything that’s stored in localStorage: 

 
BANano.EmptyLocalStorage2 

 

LocalStorage can only store string values. If you want to store objects or arrays as values 

in localStorage, you can use BANano.toJson() method to convert them into strings and 

BANano.FromJson() to convert it back. 

  



 78 BANano – Essentials 

 

10.3 CacheStorage (BANano v7.35+) 

 
This is a special kind of storage that cashes files (URLs).  You can use it for files that are not by 

default cached if a Service Worker is used.  If a Service Worker is used, BANano will cache all the 

files in the B4J /Files folder and all requests made to the server automatically. 

 

This feature is only available if HTTPS is used! URL must be a valid http or https! 

 

This is added to complete the storage possibilities, but the below methods are very rarely 

used in BANano Web App. 

 

BANano.SetCacheStorage2(url as String) 

 

Native to set URL with parameters into the cacheStorage RUNTIME.  

 
BANano.SetCacheStorage2("https://mydomain.com/image.png?param=Alain") 

 

BANano.GetCacheStorage2(url as String) As String 

 
Native returns the full URL (with parameters) if the URL is in the cacheStorage RUNTIME 

The URL will be searched without parameters. 

 
BANano.GetCacheStorage2("https://mydomain.com/image.png") 

 

will return:  https://mydomain.com/image.png?param=Alain 

 

BANano.RemoveCacheStorage2(url as String) 

 
Native deletes a key from the cacheStorage RUNTIME. 

The URL will be searched without parameters. 

 
BANano.RemoveCacheStorage2("https://mydomain.com/image.png") 

  

https://mydomain.com/image.png?param=Alain


 79 BANano – Essentials 

 

10.4 BANanoSQL 

 

BANanoSQL is an easy-to-use wrap around the alaSql library.  It allows using normal SQL queries 

(to a certain point) on the IndexedDb.  The library is not flawless: e.g. the functionalities to 

update the database structure (e.g. adding a column) or setting indexes do not work on an 

IndexedDb. These are known problems to the developers of the alaSQL library and hopefully one 

day they will be resolved. 

 

Despite these problems, I have found that it works very well in our PWAs and it is just something 

you have to take into account. 

 

Also, keep your Queries as simple as possible. 

 

Again, there are multiple ways to do things with the object. I will go over the methods I find most 

useful and easy to use. 

 

Note: I will use both examples with the variables parameter and without.  In a PWA in a local DB 

that is not as important as on a server.  But on a server ALWAYS use variables to avoid SQL 

injections! 

 

10.4.1 Creating the Database 

 

Add an instance of the BANanoSQL object to your apps Globals: 

 
Public SQL As BANanoSQL 

 

You create/open a database with SQL.OpenWait. For the first parameter, use the name of your SQL 

variable (here SQL) and for the second one the name of your Database. 

 

VERY IMPORTANT: the name of the database can NOT be a variable: it must be a literal 

String! 

 

Next you run some normal CREATE queries.  We use IF NOT EXISTS so if we open the database, the 

queries will be skipped if the tables already exist. 

 
SQL.OpenWait("SQL", "PWAMatData1") 

 

SQL.ExecuteWait("CREATE TABLE IF NOT EXISTS tProject (prjid INT, prjtype 

INT, prjparent INT, prjcode STRING, prjdesc STRING, prjiden STRING, 

prjunit STRING, prjpar1 STRING, prjpar2 STRING)", Null) 

 

SQL.ExecuteWait("CREATE TABLE IF NOT EXISTS tItem (itid INT, ittype INT, 

itparent INT, itcode STRING, itdesc STRING, itiden STRING, itunit STRING, 

itpar1 STRING, itpar2 STRING)", Null) 

 

SQL.ExecuteWait("CREATE TABLE IF NOT EXISTS tData (dtid INT 

AUTOINCREMENT, dttype INT, dtstatus INT, dtdate STRING, dtdatetime 

STRING, dtstart INT, dtstop INT, dtvalue REAL, dtex STRING, dtgrp STRING, 

dtit STRING, dtexscan STRING, dtgrpscan STRING, dtitscan STRING, dtexid 

INT, dtgrpid INT, dtitid INT, dtextra INT, dtoms STRING, dtunit STRING)", 

Null) 

  



 80 BANano – Essentials 

 

10.4.2 INSERT new data 

 
Very familiar looking if you are used to inserting data in e.g. MySQL in B4J: 

 
Dim now As Long = DateTime.Now 

 

Dim Variables As List 

Variables.Initialize 

 

Variables.Add(CurrentItemList.RegistrationType) 

Variables.Add(2) 

Variables.Add(JavaDateTimeToStr(now)) 

Variables.Add(JavaDateToStr(now)) 

Variables.Add(0) 

Variables.Add(0) 

Variables.Add(0) 

Variables.Add(Login) 

Variables.Add(prjItem.Oms) 

Variables.Add(lstOms) 

Variables.Add("") 

Variables.Add(prjItem.Iden) 

Variables.Add(lstIden) 

Variables.Add(0) 

Variables.Add(prjItem.id) 

Variables.Add(lstID) 

Variables.Add(0) 

Variables.Add("") 

Variables.Add(lstUnit) 

    

SQL.ExecuteWait($"INSERT INTO tData (dttype, dtstatus, dtdatetime, 

dtdate, dtstart, dtstop, dtvalue, dtex, dtgrp, dtit, dtexscan, dtgrpscan, 

dtitscan, dtexid, dtgrpid, dtitid, dtextra, dtoms, dtunit) VALUES 

(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)"$,Variables) 

 

10.4.3 UPDATE existing data 

 

Again, nothing special about it: 

 
SQL.ExecuteWait($"UPDATE tData SET dtextra=${dtExtra} WHERE dtid=${id}"$, 

Null) 

 

10.4.4 DELETE data 

 

Some SQL syntaxes would use DELETE * FROM, in alaSQL you have to remove the * in a DELETE.  

 
SQL.ExecuteWait($"DELETE FROM tData WHERE dtid=${CurrentToDelete.ID}"$, 

Null) 

 

I have also noticed that the delete does not always work in alaSQL without a WHERE 

clause.  If you do not have one, use something like WHERE 1=1 

 
  



 81 BANano – Essentials 

 

10.4.5 SELECT data 

 

Retrieving some records from the database. 
 

Dim results As List 

 

Results = SQL.executeWait($"SELECT dtid, dtvalue, dtit, dtstatus, 

dtextra, dtunit, dtoms, dttype FROM tData WHERE (${RegistrationTypes}) 

AND dtgrpid=${lstItem.ID} AND dtdate='${tmpDate}' ORDER BY dtid DESC"$, 

Null) 

 

For i = 0 To results.Size - 1 

 Dim m As Map = results.Get(i) 

 Dim reg As Double = m.Get("dtvalue") 

 …   

Next 

 

10.4.6 Additional Remarks 

 

Here are some things I did encounter myself when using BANanoSQL in my own PWAs. 

 

1. Every PWA needs to have its own domain. When PWAs share a domain name, alaSQL 

seems to have trouble and shares instances of objects. 

 

So use e.g. 

 
app1.mydomain.com 

app2.mydomain.com 

 

Instead of: 
 

mydomain.com/app1 

mydomain.com/app2 

 

2. On bigger record sets, it is most of the time faster to load them once and keep the result 

in a list.  It is faster to go a couple of times through the list than it is to re-query the 

database. 

 

3. A handy way to initially insert a whole bunch of data ( =  json where each item has exactly 

the same property names as the field names!) is this: 

 

Json: 

 
[{"itid": 1,"ittype": 1000, "itparent": 2, "itcode": "code1", "itdesc": 

"desc1", "itiden": "iden1", "itunit": "unit1", "itpar1":  "", "itpar2": 

""},{"itid": 2,"ittype": 1001, "itparent": 3, "itcode": "code2", "itdesc": 

"desc2", "itiden": "iden2", "itunit": "unit2", "itpar1":  "", "itpar2": 

""},…] 

 

Queries: 

 
SQL.ExecuteWait($"DELETE FROM tItem WHERE 1=1"$, Null) 

SQL.ExecuteWait($"SELECT * INTO [tItem] FROM ?"$, Array(data)) 

  



 82 BANano – Essentials 

 

4. BANanoSQL is not a real variable but kind of an atom object (there is no 'new').  You do 

not have to pass it to a sub. Just like the BANano Object, you just define it in the Globals of 

the class and 'assign' your database to it with the OpenWait() command. 

 

SQL.OpenWait("SQL", "MyDB") just 'assigns' the MyDB database to the B4J SQL variable. 

 

So, you can have in your Main: 

 
Sub Process_Globals 

   Public SQL As BANanoSQL     

   Public myDB As MyDBFuncs 

   ... 

End Sub 

 

Sub BANano_Ready() 

    ' Initialize your local browser database 

    SQL.OpenWait("SQL", "MyDB") 

    SQL.ExecuteWait("CREATE TABLE IF NOT EXISTS tTable (tblid INT, tblcode 

STRING, tbldesc STRING)", Null) 

 

    myDB.Initialize 

  

    ' insert some record via our MyDB class 

    BANano.Await(myDB.InsertWait(1, "A", "Alain")) 

    BANano.Await(myDB.InsertWait(2, "J", "Jos")) 

 

    Dim Results As List = SQL.ExecuteWait("SELECT tblcode, tbldesc FROM 

tTable", Null) 

    Log(Results) 

    ... 

End Sub 

 

And a class MyDBFuncs: 

 
Sub Class_Globals 

    Private BANano As BANano 'ignore 

    Private SQL As BANanoSQL 

End Sub 

 

Public Sub Initialize 

 

End Sub 

 

public Sub InsertWait(id As Long, code As String, desc As String) 

    Dim Vars As List 

    Vars.Initialize 

    Vars.Add(id) 

    Vars.Add(code) 

    Vars.Add(desc) 

 

    ' just 're-assign' MyDB to the local SQL variable 

    SQL.OpenWait("SQL", "MyDB") 

    SQL.ExecuteWait("INSERT INTO tTable (tblid, tblcode, tbldesc) VALUES 

(?, ?, ?)", Vars) 

End Sub 

 

 

 

 



 83 BANano – Essentials 

 

11 Components for the Abstract Layout Designer 
 

11.1 Creating a Component 

 

The easiest way to add a BANano Custom View is by using the menu: 

 

 
 

This will create the base code for a BANano Custom View, which is very similar to a normal B4J 

Custom View. 

 

The main difference if the syntax of the DesignerCreateView method. Instead of a Panel of Pane, it 

is a BANanoElement. 

 
Public Sub DesignerCreateView (Target As BANanoElement, Props As Map) 

 mTarget = Target ' IMPORTANT 

 … 

End Sub 

 

Some default events will also be generated (uncomment to activate which ones you use, or write 

new ones) 

 
' Uncomment the events you want to show to the user and implement the 

HandleEvents in DesignerCreateView 

'#Event: Focus (event As BANanoEvent) 

'#Event: Blur (event As BANanoEvent) 

'#Event: Resize (event As BANanoEvent) 

'#Event: Scroll (event As BANanoEvent) 

'#Event: Keydown (event As BANanoEvent) 

'#Event: KeyPress (event As BANanoEvent) 

… 

 

As well as some default much used properties: 
 

' Properties that will be show in the ABStract Designer.  They will be 

passed in the props map in DesignerCreateView (Case Sensitive!) 

#DesignerProperty: Key: Classes, DisplayName: Classes, FieldType: String, 

DefaultValue: , Description: Classes added to the HTML tag. 

#DesignerProperty: Key: Style, DisplayName: Style, FieldType: String, 

DefaultValue: , Description: Styles added to the HTML tag. Must be a json 

String. 



 84 BANano – Essentials 

 
#DesignerProperty: Key: MarginLeft, DisplayName: Margin Left, FieldType: 

String, DefaultValue: , Description: Margin Left 

#DesignerProperty: Key: MarginRight, DisplayName: Margin Right, 

FieldType: String, DefaultValue: , Description: Margin Right 

#DesignerProperty: Key: MarginTop, DisplayName: Margin Top, FieldType: 

String, DefaultValue: , Description: Margin Top 

#DesignerProperty: Key: MarginBottom, DisplayName: Margin Bottom, 

FieldType: String, DefaultValue: , Description: Margin Bottom 

#DesignerProperty: Key: PaddingLeft, DisplayName: Padding Left, 

FieldType: String, DefaultValue: , Description: Padding Left 

#DesignerProperty: Key: PaddingRight, DisplayName: Padding Right, 

FieldType: String, DefaultValue: , Description: Padding Right 

#DesignerProperty: Key: PaddingTop, DisplayName: Padding Top, FieldType: 

String, DefaultValue: , Description: Padding Top 

#DesignerProperty: Key: PaddingBottom, DisplayName: Padding Bottom, 

FieldType: String, DefaultValue: , Description: Padding Bottom 

 

TIP: do not over-create properties! They carry quite some weight, and properties that are 

not used are still passed through the LoadLayout method.  They can blow-up the size for 

your Web App or .b4xlib fast. 

 

Think which ones are really useful and are almost always needed when designing a 

layout.  Make methods for properties that are only used in specific cases. They will be 

removed in Release time if they are not used in the final code. 

 

You can read these properties back in the DesignerCreateView Props parameter: 

 
If Props <> Null Then 

 mFlavor = Props.Get("Flavor") 

 mText = Props.Get("Text")   

… 

End If 

 

Adding events to your component is done as in the BANanoEvent chapter. In this example, we do 

not have to do anything special so we can just pass it through to the WebApp: 

 
' defining events is very simple. Note that it has to be run AFTER adding 

it to the HTML DOM! eventName must be lowercase! 

mElement.HandleEvents("click", mCallBack, mEventName & "_click") 

 

And on top we uncomment the Click event: 
 

#Event: Click (event As BANanoEvent) 

 

Now we can use this event in our WebApp as (suppose we have an SKButton called myButton on 

our layout): 
 

Sub myButton_Click(event As BANanoEvent) 

 Dim myButton as SKButton = Sender 

     … 

End Sub 

  



 85 BANano – Essentials 

 

11.1.1 Multi-line Designer property names 

 
A property which Key starts with the raw prefix allows the user to enter multi line input as its value. 

 

An example of this is the RAWHtml property of the SKLabel in the BANanoSkeleton library (in this 

case the key key is just raw, but you can can use anything after it like e.g. RawMyProp etc): 

 
#DesignerProperty: Key: Raw, DisplayName: Raw HTML, FieldType: String, 

DefaultValue: , Description: RAW HTML. Overrides the Text property. 

 

Another example: 
 

#DesignerProperty: Key: RawMyProp, DisplayName: Multi-line property, 

FieldType: String, DefaultValue: , Description: Allows multi-line text 

 

Now the user can use the multi-line box in the Abstract Designer. When transpiling, BANano will 

make sure the enters and double quotes are transpiled to valid JavaScript. 

 

For example the value: 

 
Line1 

Line2 

"Line3" 

 

Will be transpiled to: 

 
Line1\n\line2\n\"Line3\" 

 

  



 86 BANano – Essentials 

 

11.2 A note on extra Assets 

 

Sometimes you will have a Component that requires extra assets (like JavaScript or CSS files). 

 

You add these files in the Files Tab in the IDE first. Do not forget to Sync! 

 

Then, in AppStart, you have to define them (example for the DatePicker in BANanoSkeleton): 

 
BANano.Header.AddCSSFile("BANanoSkeleton.datepicker.min.css")  

BANano.Header.AddJavascriptFile("BANanoSkeleton.datepicker.min.js") 

 

Finally, we add in the Initialize() method of the Component that this component requires them: 
 

Public Sub Initialize (CallBack As Object, Name As String, EventName As 

String) 

 mName = Name.ToLowerCase 

 mEventName = EventName.ToLowerCase 

 mCallBack = CallBack 

 S.Initialize(Me) 

  

 BANano.DependsOnAsset("BANanoSkeleton.datepicker.min.css") 

 BANano.DependsOnAsset("BANanoSkeleton.datepicker.min.js") 

End Sub 

 

Why these two last lines? 

 

The BANano Transpiler can use these directives and ONLY add them to your final Web App IF you 

do use a SKDatePicker in your Web App! So if you do not use this component in your final app, 

those Assets will not be loaded, hence making your final Web App a lot lighter. 

 

How about folders? 

 

As the B4J IDE can not handle folders in the /Files folder, you will need to zip them and add that 

zip file to the Files Manager tab. 

 

Add in AppStart() the following directive so the Transpiler can unzip the file in the root of your 

WebApp when running a Build(). 

 
BANano.Header.UnzipAdditionalAssets("Extra.zip") 

 

This will result in the following folder structure after Build: 
 

MyApp 

--- assets 

--- scripts 

--- styles 

--- Extra 

------ folders in Extra.zip 

------ files in Extra.zip 

 

So if you would like those files to be unzipped in assets, you will need to put them in your zip file 

also in an /assets folder! 
  



 87 BANano – Essentials 

 

12 BANano libraries 
 

With the .b4xlib format of B4J, it is very easy to reate BANanoLibraries.  

You can use the 'BANano Library' Template to get started. 

 

 
 

This will generate some basic code. 

 

Main: 

 
#Region Project Attributes  

 #MainFormWidth: 600 

 #MainFormHeight: 600  

 #IgnoreWarnings: 16, 10, 14, 15  

 #LibraryAuthor: Alain Bailleul (AlwaysBusy) 

 #LibraryVersion: 1.01 

#End Region 

 

Sub Process_Globals 

 Private BANano As BANano 'ignore 

End Sub 

 

Sub AppStart (Form1 As Form, Args() As String)  

 ' The name of your library. Strongly recommanded to let it begin 

with BANano! 

 BANano.Initialize("BANano", "BANanoMyLibName", DateTime.Now) 

  

 ' add any extra files you need for your library.  Files must be in 

the /Files folder of the project  

 'BANano.Header.AddCSSFile("extra.min.css") 

 'BANano.Header.AddJavascriptFile("extra.min.js") 

    

 ' start the build 

 #if release 

  BANano.BuildAsB4Xlib("1.01") 'version 

 #else 

  BANano.Build(File.DirApp) 

 #end if 

  

 ExitApplication 

End Sub 



 88 BANano – Essentials 

 
'Return true to allow the default exceptions handler to handle the 

uncaught exception. 

Sub Application_Error (Error As Exception, StackTrace As String) As 

Boolean 

 Return True 

End Sub 

 

' HERE STARTS YOUR APP 

' you can use the Main (only) to do some tests on your library 

Sub BANano_Ready() 

  

End Sub 

 

MyLibName (which is just a normal B4J class): 

 
' Your BANano library 

Sub Class_Globals 

 Private BANano As BANano 'ignore 

End Sub 

 

'Initializes the object. You can add parameters to this method if needed. 

Public Sub Initialize 

  

End Sub 

 

BANano.BuildAsB4Xlib will add EVERYTHING in the project, except what is in Main. 

 

If you have extra assets that this library needs (like JavaScript files, CSS files or images), you have to 

add them in the projects /Files folder. Do not forget to sync! 

 

It is strongly recommended to let the name of your library start with the prefix BANano.  This 

to make it easier for everyone to recognize which library is for BANano, and which for a normal B4J 

project. 

 

Next to logic code, or a wrapper for an existing JavaScript library, you can also add BANano 

Custom Views in a BANanoLibrary.  



 89 BANano – Essentials 

 

13 Introducing BANanoServer 
 

B4J has great build-in Server capabilities with the jServer library based on Jetty! It has several 

advantages for a B4J programmer over for example PHP. More and more companies are moving 

away from PHP to the much more secure and faster Java implementation. And you can use your 

beloved B4X syntax with its extensive libraries! 

 

When it comes to the PHP vs Java performance comparison, Java is the winner. Java is 

precompiled, and PHP needs time to comply with bytecode on each request. The optimization 

work in both Java and PHP has been done but Java seems to put more work into that. 

 

Java is considered to be more stable than PHP. It requires a longer code which takes time. At the 

same time, a well-written longer code becomes a more stable application with fewer crashes. It has 

become the reason why banks and fintech brands pick Java without any further considerations.  

 

Java is also considered to be a more secure language, compared to PHP. It has more built-in 

security features while PHP developers have to opt for other frameworks. However, in terms of 

security, Java works better for complex projects because it can block some features in low-level 

programming to protect the PC. 

 

Moreover, a B4J Server can do WebSockets (Yeah!).  With Websockets we can do bi-directional 

communication: not only can de Web App ask something to the Server and get a Response, as 

long as the Web App is connected, the server can push things to the Web App too!  

  



 90 BANano – Essentials 

 

13.1 What is BANanoServer? 

 

Plain and simple: BANanoServer = a pre-configured jServer!  
 

Because of that, this booklet will NOT go into everything a jServer can do! All this information can 

be found on the B4X website and forum.  There are plenty of tutorials and examples to be found 

there. 

 

This booklet will cover the BANano side of making a Request and Receiving a response back, only 

showing the B4J jServer things needed for the examples. 

 

The BANanoServer library has pre-configured a lot of stuff for you, but as it is a just a B4J .b4xlib 

library, you can make any changes to it to match with your needs.  

 

We use BANanoServer to make Requests from our BANano Web App to the server, and handle the 

Response back.  This can be for example because we want to retrieve some data from a MySQL 

database. Most commonly, this response is some Json. 

 

Most common use of the BANanoServer is as a REST API server.  B4X has a brilliant way 

to do this using Handlers! 

 

There are many ways to talk to a REST API, but the easiest and most modern way is by making a 

BANanoFetch call. 

 

In a second example I also will go into WebSockets and we will see we can write the SERVER and 

BROWSER side all in ONE B4J app! 

 

First we will create both types of BANano servers in B4J, then we go deeper into an example of 

them. 

 

  



 91 BANano – Essentials 

 

13.2 Creating a B4J App using the BANanoServer library 

 

There are two ways to do this. One with REST API server and one with a WebSockets server. 

13.2.1 REST API BANanoServer 

 

Such a project consists of one REST API  Java app and (at least) one BANano PWA app.  The 

PWA app is stand-alone and communicates with the server using a REST API and with 

BANanoFetch calls. 

 

1. To create the REST API server, use the 'BANano REST API Server' template from the menu: 

 

 
 

You can use these template classes: 

 

 
 

  



 92 BANano – Essentials 

 

2. The PWA is created as we have seen before using the 'BANano PWA' template: 

 

 
 

For the PWA you can use all normal classes and modules, and also a special one BANano Router 

Page that will be explained in a separate chapter. 

 

 
 

 

 

  



 93 BANano – Essentials 

 

13.2.2 WebSockets BANanoServer 

 

Such a Web App has both the server code and the browser code in one B4J project, so we only 

have to create one project using the 'BANano WebSocket Server and Client' template. 

 

 
 

When you open the project, you will notice that some files have a special uppercase prefix. This is 

very important in a BANanoServer WebSockets project! 

 

SERVER: code for the SERVER ONLY 

BROWSER: code for the PWA ONLY 

SHARED: code that will be used by the SERVER and will be TRANSPILED for the PWA 

 

You can easily add a template page from the menu to add such a class: 

 

 
 

WebSockets classes generally have both a SERVER and a BROWSER part. E.g., 

 

SERVERTemplate and BROWSERTemplate.  These two will be automatically connected with each 

other via the WebSocket. They do work as a pair. 

 

You can of course also add normal classes and modules (not WebSockets ones).  Just use the 

same prefixes: SERVER if it is for the server, BROWSER if it needs to be transpiled for the PWA, 

SHARED if it is used in both. 

 

 



 94 BANano – Essentials 

 

13.3 A REST API Example 

 

In this example we will make a Request to a BANanoServer where we want to retrieve some data.  

E.g. the tProjects table from a MySQL database and put the result in our BANanoSQL database on 

the browsers side.  So if we go offline with our PWA, we can still show all the info on those projects 

if we need to. 

 

13.3.1 BROWSER side: PWA 

 

Let's assume we created the database and the table tProject as in the BANanoSQL chapter: 

 
SQL.OpenWait("SQL", "PWAMatData1") 

 

SQL.ExecuteWait("CREATE TABLE IF NOT EXISTS tProject (prjid INT, prjtype INT, 

prjparent INT, prjcode STRING, prjdesc STRING, prjiden STRING, prjunit STRING, 

prjpar1 STRING, prjpar2 STRING)", Null) 

 

What we need is a BANanoFetch to get all the projects from a certain type (GroupType here) from 

the Server so we can add them to the local BANanoSQL database.  This could be done with a GET, 

but in this case I will use a POST because I want to send an ApiKey (saved as a cookie for example) 

with every call. 

 

We are also going to make a json file on the Server side that we then can retrieve very quickly. In 

many cases you just can return the Json directly, but for this example, I want the initial fetch only to 

return a small Json file containing the URL the next step has to retrieve with a simple GET. 

 

The code is commented so you can follow what happens in each step. 

 
public Sub GetProjectsWait(GroupType as Long) 

 ' Declaring our Fetch objects 

 Dim fetch As BANanoFetch 

 Dim fetchOptions As BANanoFetchOptions 

 Dim fetchResponse As BANanoFetchResponse 

  

' Some helper variables for the fetch to receive the responses 

 Dim data As Map 

 Dim Error As String 

  

' Setting up our Request 

 fetchOptions.Initialize 

 ' it is a POST 

 fetchOptions.Method = "POST" 

' in the body of the Request, we add some Json containing the GroupType we 

want to receive 

 fetchOptions.Body = $"{"type": ${GroupType}}"$ 

' in the Headers we say it is Json UTF-8 and we also add our ApiKey so we 

can check on the server side if this user is allowed to make this call 

 fetchOptions.Headers = CreateMap("Content-type": "application/json; 

charset=UTF-8", "api_key": "myAPIKey") 

  

  



 95 BANano – Essentials 

 
 ' Let's make the initial POST Request! 

fetch.Initialize(APIUrl & "/v1/group/getgroups", fetchOptions) 

 fetch.Then(fetchResponse) 

' we got a response, but as the Json() method returns a Promise, we 

will need to process it in the next 'then' so we return it to this 

Fetch 

  fetch.Return(fetchResponse.Json) 

 fetch.ThenWait(data) 

' here we got the actual Json back and get the url property 

  Dim url As String = data.Get("url") 

   

' We build a second GET Fetch to retrieve the file from json the 

server 

  Dim fetch2 As BANanoFetch 

  fetch2.Initialize(url, Null) 

  fetch2.Thenwait(fetchResponse) 

' same here, we get the actual Json and process it in the 

second .ThenWait 

fetch2.Return(fetchResponse.Json) 

  fetch2.Thenwait(data)   

' we use the very fast Trick we learned from the BANanoSQL 

chapter to add the data  

   SQL.ExecuteWait($"DELETE FROM tProject WHERE 1=1"$, Null) 

   SQL.ExecuteWait($"SELECT * INTO [tProject] FROM ?"$, 

Array(data))       

   ' show a toast to the user that we got the new projects 

   SKTools.ShowToast("Projects Received!", "info", 3000, True) 

  fetch2.ElseWait(Error) 

   ' We got an error! 

   SKTools.ShowToast(Error, "info", 3000, True) 

  fetch2.End 

 fetch.ElseWait(data) 

  ' We got an error! 

  SKTools.ShowToast(Error, "info", 3000, True)   

 fetch.End 

End Sub 

 

Now we can have an SKButton btnSync for example where, if the user clicks on it, we call the above 

method: 

 
Private Sub btnSync_Click (event As BANanoEvent) 

 BANano.Await(GetProjectsWait(100110)) 

End Sub 

  



 96 BANano – Essentials 

 

13.3.2 SERVER side 

 

So what would we need to handle the request on the server side? 

 

After we created the Server with the BANano REST API Server' template, let's take a look at the 

Apps entry point: 

 
Sub AppStart (Args() As String) 

 ' initialize the database 

 Dim DBUrl As String ' = 

"jdbc:mysql://127.0.0.1:3306/DATABASENAME?characterEncoding=utf8&zeroDateTimeBeh

avior=convertToNull&allowLoadLocalInfile=True" 

 Dim DBLogin As String ' = "DATABASELOGIN" 

 Dim DBPassword As String ' = "DATABASEPASSWORD" 

 Dim MaxConnections As Long = 25 

 

 ' initialize the BANano Server 

 If File.Exists(File.DirApp, "server.ini") = False Then 

  Dim txtOUT As TextWriter 

  txtOUT.Initialize(File.OpenOutput(File.DirApp, "server.ini", False)) 

  txtOUT.WriteLine("Host=localhost") 

  txtOUT.WriteLine("Port=55056") 

  txtOUT.WriteLine("PortSSL=0") 

  txtOUT.WriteLine("CacheScavengePeriodSeconds=900") 

  txtOUT.WriteLine("SessionMaxInactiveIntervalSeconds=900") 

  txtOUT.Close   

 End If 

 Server.Initialize("server.ini") ' in Objects path defined 

   

 ' for our upload 

 Server.UploadAllowedFileTypes = "ZIP;JPG" 

 Server.UploadMaxSize = 1024*1024*5 ' 5 MB 

   

 Server.AddAuthFilter("/*", "AuthFilter", False)  

   

 ' add your RESt API handlers 

 Server.AddHandler("/v1/template/*", "HandlerTemplate", False) 

  

 ' cors configuration 

 Server.SetCORSFilter("/*", "*", "*", "*") 

  

 Log("http://localhost:" & Server.Port & "/" & Server.StartPage) 

  

 ' your database 

 If DBUrl <> "" Then 

  SERVERDBM.InitializeMySQL(DBUrl, DBLogin, DBPassword, 

MaxConnections) 

 End If 

  

 ' lets start the B4J server 

 If Server.PortSSL <> 0 Then 

  Server.StartServerHTTP2("keystore.jks", "SSLKeyStorePassword", 

"SSLKeyManagerPassword") 

 Else 

  Server.StartServer 

 End If 

  

 StartMessageLoop 

End Sub 

 

As you see, this is all normal B4J jServer code.  With the BANanoServer wrapper, we just have some 

easy to use methods like the AddAuthFilter and SetCORSFilter. 



 97 BANano – Essentials 

 
 

 

In the above BROWSER Side example (12.3.1), we need a REST API Handler in the server that can 

receive this: 

 

Path: "/v1/group/getgroups" 

Header: api_key 

Body:  
 

{ 

 "groupType": number 

} 

 

The first thing we will do in our BANanoServer B4J App is checking if this user is Authorized to use 

our REST API by checking the api_key. 

 

For that, we can use a B4J jServer Filter that we can use for all our REST API calls. If you used the 

'BANano REST API Server' template, there is already a AuthFilter class build in: 

 
'Return True to allow the request to proceed. 

Public Sub Filter(req As ServletRequest, resp As ServletResponse) As Boolean 

 ' Get the api_key from the header 

 Dim ApiKey As String = req.GetHeader("api_key") 

' Set some header options on the response 

 resp.ContentType = "application/json" 

 resp.SetHeader("X-Frame-Options", "DENY") 

 resp.SetHeader("X-XSS-Protection", "1;mode=block") 

 resp.SetHeader("Strict-Transport-Security", "max-

age=31536000;includeSubDomains;preload") 

 resp.SetHeader("X-Content-Type-Options", "nosniff") 

 resp.SetHeader("Referrer-Policy", "no-referrer-when-downgrade") 

 resp.SetHeader("Content-Security-Policy", "script-src 

https://yourdomain.com") 

 resp.SetHeader("Feature-Policy", "microphone 'none'") 

 ' Check the api key, if not valid, return False 

 If ApiKey <> "myAPIKey" Then 

  resp.Status = 401 

  resp.Write("Unauthorized") 

  Return False 

 End If 

 ' if OK, set some additional response headers and return True 

 resp.SetHeader("Access-Control-Allow-Origin","*") 

 resp.SetHeader("Access-Control-Allow-Methods" ,"GET, POST, UPDATE, DELETE, 

OPTIONS") 

 resp.SetHeader("Access-Control-Allow-Headers", "Access-Control-Allow-

Headers, Origin, Accept, X-Requested-With, Content-Type, Access-Control-Request-

Method, Access-Control-Request-Headers, Authorization") 

 Return True 

End Sub 

 

In a real-life app, you would of course have smarter code to check e.g. if the api_key is in a 

database. 

 

Next we need a handler to process our incoming BANanoFetch call.  We can use a normal B4J 

Server handler, or the BANanoServer REST API Handler, which has already some code to get 

started in it. 

 

 



 98 BANano – Essentials 

 

 

We pick such a BANanoServer REST API Handler from the menu, give it a name e.g. 

HandlerGroup. 

 

First we change our HandlerPath (mind the / at the end!): 

 
Dim HandlerPath As String = "/v1/group/" 

 

In Main, we have also have to add our new path, with the * to handle all sub paths: 

 
Server.AddHandler("/v1/group/*", "HandlerTemplate", False) 

 

This will catch all the calls that start with the path /v1/group/ 
 

Back in our HandlerGroup class, we will process the POST from the BANanoFetch.  After removing 

some not needed code and processing the POST call, we may have something like this: 

 

Note: SERVERDBM is a build-in wrapper in BANanoServer to handle the Database.   

 
Sub Class_Globals 

 ' CHANGE THIS MATCHING YOUR API 

 ' Also add in Main the Server.AddHandler(): path with *  

 Dim HandlerPath As String = "/v1/group/" 

End Sub 

 

Public Sub Initialize 

  

End Sub 

 

Sub Handle(req As ServletRequest, resp As ServletResponse) 

 resp.ContentType = "application/json" 

  

 Dim Response As String 

 Dim bodyCode As String 

 Dim body As TextReader 

  

 Select Case req.Method 

 Case "POST" 

  If req.RequestURI.Length + 1 <= HandlerPath.Length Then 

   SendError(resp, 404, "Invalid call") 

   Return 

  End If 

  Dim TypePost As String 

TypePost = req.RequestURI.SubString(HandlerPath.Length) 

    

  Select Case TypePost 

  Case "getgroups" 

   body.Initialize(req.InputStream) 

   bodyCode = body.ReadAll 

   If bodyCode.StartsWith("{") Then 

    Dim jsonP As JSONParser 

    jsonP.Initialize(bodyCode) 

    Dim m As Map = jsonP.NextObject 

    Dim GroupType As Long = m.GetDefault("type", 0) 

       

    Dim SQL As SQL = SERVERDBM.GetSQL     

    ' query that gets the results you want to return 

    Dim SQL_str As String = $"SELECT grpID AS lstid, 

grpGrpTypID As lsttype, grpCode as lstcode, grpDescription as lstdesc, 



 99 BANano – Essentials 

 
grpIdenCode as lstiden, grpParentID as lstparent, "" as lstunit, "" as lstpar1, 

"" as lstpar2 FROM tGroup grp WHERE grp.grpGrpTypID = ${GroupType}"$  

       

    Dim jsonAllStr As String = "[]" 

    Dim founds As List = SQLSelectToJson(SQL, SQL_str, Null) 

    SERVERDBM.CloseSQL(SQL) 

       

    If founds.Size > 0 Then 

Dim jsonG As JSONGenerator 

     jsonG.Initialize2(founds) 

     jsonAllStr = jsonG.ToString 

    End If 

       

' should be a folder in your www folder,  

' will be different if running in debug or release mode! 

    Dim LiteDir As String = File.GetFileParent(File.DirApp) 

& "/myApp/www" & "/myApp/PWALists" 

         

    DateTime.DateFormat = "MMddHHmm" 

    Dim FileName As String 

FileName = DateTime.Date(DateTime.Now) & ".json" 

          

' write the json in a file  

    Dim txtOUT As TextWriter     

    txtOUT.Initialize(File.OpenOutput(LiteDir, FileName, 

False)) 

    txtOUT.Write(jsonAllStr) 

    txtOUT.Close 

      

' return an url to the new file  

    Dim mOUT As Map 

    mOUT.Initialize 

    mOUT.Put("status", 1) 

    mOUT.Put("url", "http://localhost:" & Main.Server.Port & 

"/" & Main.Server.StartPage & "/PWALists/" & FileName)    

   

    Dim jsonG As JSONGenerator 

    jsonG.Initialize(mOUT) 

    Response = jsonG.ToString   

   Else 

    SendError(resp, 404, "Invalid call") 

    Return 

   End If 

  Case Else 

   SendError(resp, 404, "Invalid call") 

   Return 

  End Select    

 Case Else 

  SendError(resp, 404, "Invalid call") 

  Return 

End Select 

 

 If Response <> "" Then 

  resp.write(Response) 

 End If 

End Sub 

 

' helper method to send error 

public Sub SendError(resp As ServletResponse, code As Int, msg As String) 

 resp.Status = code 

 resp.Write(msg) 

End Sub 

  



 100 BANano – Essentials 

 
' helper method to get the SQL results in Json format (Array of records) 

Sub SQLSelectToJson(SQL As SQL, Query As String, args As List) As List  

 Dim l As List 

 l.Initialize 

 Dim cur As ResultSet 

 Try 

  cur = SQL.ExecQuery2(Query, args) 

 Catch 

  Log(LastException) 

  Return l 

 End Try 

 Dim first As Boolean = True 

 Dim ColTypes() As Int 

 Do While cur.NextRow 

  If first Then 

   ColTypes = GetMetaTypes(cur) 

  End If 

  Dim res As Map 

  res.Initialize 

  For i = 0 To cur.ColumnCount - 1 

   Dim colName as String = cur.GetColumnName(i)) 

   Select Case ColTypes(i) 

   Case 4 

    res.Put(colName, cur.GetInt2(i)) 

   Case 3,8,6,7 

    res.Put(colName, cur.GetDouble2(i)) 

   Case Else 

    res.Put(colName, NullSafe(cur.GetString2(i), "")) 

   End Select 

  Next 

  l.Add(res) 

  first = False 

 Loop 

 cur.Close 

 Return l 

End Sub 

 

Sub NullSafe(inp As Object, default As Object) As Object 

 If inp = Null Or inp = "null" Then 

  Return default 

 End If 

 Return inp 

End Sub 

 

Sub GetMetaTypes(rs As ResultSet) As Int() 

 Dim JO As JavaObject = rs 

 Dim rsmd As JavaObject = JO.RunMethod("getMetaData", Null ) 

 Dim colTypes(rs.ColumnCount) As Int 

  

 For i = 0 To rs.ColumnCount - 1 

  colTypes(i) = rsmd.RunMethod("getColumnType", Array(i+1)) 

 Next  

 Return colTypes 

 

#if java 

import java.sql.ResultSet; 

import java.sql.SQLException; 

import java.sql.ResultSetMetaData; 

  

public ResultSetMetaData  getMeta(ResultSet rs) throws SQLException { 

    ResultSetMetaData rsmd = rs.getMetaData(); 

    return rsmd; 

} 

#End If 

End Sub  



 101 BANano – Essentials 

 

13.4 A WebSockets Example 

 

Using WebSockets is very similar to using normal B4J WebSockets. The server side is the same, but 

now we can also write the Client side (as in default B4J WebApps, we had to write any JavaScript, 

HTML or CSS manually ourselves). 

 

If you used the 'BANano WebSocket Server and Client' template, it will contain the familiar 

normal PWA example, but now using WebSockets: 

 

 
 

Unlike the REST API example, we have here both the server and the client code in one B4J project. 

 

Let's have a look how the Apps entry point looks like compared to the REST API one: 

 
Sub AppStart (Args() As String) 

 ' initialize the database 

 Dim DBUrl As String ' = 

"jdbc:mysql://127.0.0.1:3306/DATABASENAME?characterEncoding=utf8&zeroDateTimeBeh

avior=convertToNull&allowLoadLocalInfile=True" 

 Dim DBLogin As String ' = "DATABASELOGIN" 

 Dim DBPassword As String ' = "DATABASEPASSWORD" 

 Dim MaxConnections As Long = 25 

  

 ' initialize the BANano Server 

 If File.Exists(File.DirApp, "server.ini") = False Then 

  Dim txtOUT As TextWriter 

  txtOUT.Initialize(File.OpenOutput(File.DirApp, "server.ini", False)) 

  txtOUT.WriteLine("Host=localhost") 

  txtOUT.WriteLine("Port=55056") 



 102 BANano – Essentials 

 
  txtOUT.WriteLine("PortSSL=0") 

  txtOUT.WriteLine("CacheScavengePeriodSeconds=900") 

  txtOUT.WriteLine("SessionMaxInactiveIntervalSeconds=900") 

  txtOUT.Close 

 End If 

 Server.Initialize("server.ini") ' in Objects path defined 

   

 ' for our upload 

 Server.UploadAllowedFileTypes = "ZIP;JPG" 

 Server.UploadMaxSize = 1024*1024*5 ' 5 MB 

  

 ' OPTIONAL: the prefix of our BROWSER (BANano only code) classes that 

miror their SERVER counterpart (default is "BROWSER") 

 ' IMPORTANT to set this one if you do not use this default Prefix! (not 

advised. 

 Server.BROWSERPrefix = "BROWSER"  

     

 ' initialize BANano 

 Server.BANano.Initialize("BANano", "BANanoServer" ,1) 

 Server.BANano.TranspilerOptions.SetStaticFolder("www") 

 Server.BANano.Header.Title="BANano SERVER" 

  

 ' enable/disable live code swapping 

 Server.BANano.TranspilerOptions.EnableLiveCodeSwapping = False 

  

 ' some B4J typical libs we want to be ignored by the Transpiler 

 Server.BANano.TranspilerOptions.IgnoreB4JLibrary("Json") 

   

 ' write the theme 

 SKTools.WriteTheme 

   

 ' transpile all the BANano b4J code to javascript 

 Server.BANano.BuildForServer(Server.OutputFolder) 

   

 ' add your SERVER classes, not the BROWSER parts: 

 Server.AddWebSocket("/ws/" & Server.BANano.StaticFolder & "/template" , 

"SERVERTemplate") 

  

 ' set the start page one will go to if they enter the site by the root 

 Server.StartPage = "template" 

  

 ' cors configuration 

 Server.SetCORSFilter("/*", "*", "*", "*") 

  

 Log("http://localhost:" & Server.Port & "/" & Server.StartPage) 

  

 ' your database 

 If DBUrl <> "" Then 

  SERVERDBM.InitializeMySQL(DBUrl, DBLogin, DBPassword, 

MaxConnections) 

 End If 

  

 ' lets start the B4J server 

 If Server.PortSSL <> 0 Then 

  Server.StartServerHTTP2("keystore.jks", "SSLKeyStorePassword", 

"SSLKeyManagerPassword") 

 Else 

  Server.StartServer 

 End If 

  

 StartMessageLoop 

End Sub 

 

 



 103 BANano – Essentials 

 

 

The big picture is very similar to the REST API one, except here we are also using BANano for the 

Client side in the same project, instead of in a separate PWA. 

 

For this, we have to incorporate also the same things we do in a BANano PWA StartApp(): 

Initializing BANano, Setting some Transpiler Options, Writing the theme. 

 

Differences with the normal PWA are: 

 
Server.BROWSERPrefix = "BROWSER"  ' optional 
Server.BANano.TranspilerOptions.SetStaticFolder("www") 

 

And especially: 

 
Server.BANano.BuildForServer(Server.OutputFolder) 

 

In a normal BANano PWA, we use .Build(), but for a BANanoServer WebSocket project, we do need 

to use the .BuildForServer() method. 

 

Furthermore (but this is also normal B4J jServer code), we add our pages using the 

Server.AddWebSocket method. 

 

ONLY Add the SERVER versions of the SERVER/BROWSER pair classes! 

 

Finally, we have to set our first page when the user first enters our WebApp: 

 
Server.StartPage = "template" 

 

13.4.1 BROWSER side: PWA 

 

As said before, in such a project we have to use a prefix on our classes to indicate if it is for the 

BROWSER, for the SERVER, or shared code for both. 

 

Looking at the BROWSER Template class, you will see this all looks very familiar to a normal PWA 

(differences in red, some of it just to demonstrate something): 

 
'BANano compatible ONLY code. You cannot use typical B4J libraries here.  Use 

their BANano version (if it exists) 

'Making changes in this module/class in B4J debug mode will NOT have any effect 

until recompiled! 

Sub Class_Globals 

 Private BANano As BANano 'ignore 

 Private ws As BANanoWebSocket 

  

 ' from the MainLayout 

 Private MainHamburgerMenu As SKLabel 'ignore 

 Private MainSidebar As SKSidebar 'ignore 

 Private MainPageHolder As SKContainer 'ignore 

  

 ' from the WelcomeModalLayout 

 Private WelcomeModal As SKModal 'ignore 

 Private WelcomeModalMessage As SKLabel 'ignore 

  

 ' from the WelcomePageLayout 



 104 BANano – Essentials 

 
 Private WelcomePageName As SKTextBox 'ignore 

 Private WelcomePageButton As SKButton 'ignore 

  

 ' from the MenuLayout 

 Private MenuList As SKMenu 'ignore 

  

 ' some media queries for our responsive menu 

 Private Bigger992px As BANanoMediaQuery 

 Private Smaller992px As BANanoMediaQuery 

  

 Private Counter As Long 

End Sub 

 

'Initializes the object. You can NOT add extra parameters! 

Public Sub Initialize 

 ' does the browser support websockets? 

 If ws.IsSupported Then 

  ' here we connect to our SERVERTemplate websocket class using the 

'classic' B4J Websocket events WebSocket_Connected and WebSocket_Disconnected 

  ' this must match with the first parameter of .AddWebSocket in Main! 

  ' Server.AddWebSocket("/ws/" & Server.BANano.StaticFolder & 

"/template" , "SERVERTemplate") 

  ws.Initialize("ws://" & BANano.Location.GetHost & "/ws/" & 

BANano.StaticFolder & "/template") 

 End If 

End Sub 

 

' Server says socket is ready 

Sub WebSocket_Connected() 

 Log("Connected ===> My B4J PageId: " & BANano.GetPageID) 

  

End Sub 

 

Sub WebSocket_Disconnected(event As BANanoEvent) 

 Log("Websocket closed") 

End Sub 

 

public Sub BANano_Ready() 

 Private body As BANanoElement 

 body.Initialize("#body") 

  

 ' append and load our main layout 

 body.Append($"<div 

id="mainHolder"></div>"$).Get("#mainHolder").LoadLayout("MainLayout") 

 ' append and load a modal sheet 

 body.Append($"<div 

id="modalHolder"></div>"$).Get("#modalHolder").LoadLayout("WelcomeModalLayout") 

  

 ' loading our menu in our sidebar 

 MainSidebar.Element.LoadLayout("MenuLayout") 

  

 ' making the menu layout responsive: always open when screen size is 

bigger than 992px 

 Bigger992px.Initialize("(min-width: 992px)") 

 Smaller992px.Initialize("(max-width: 991px)") 

  

 ' add our menu items 

 MenuList.AddMenuItem("", "page1", "fas fa-user", "{NBSP}{NBSP}Welcome 

page") 

 MenuList.Start 

   

 ' load our first page 

 MainPageHolder.Element.LoadLayout("WelcomePageLayout") 

End Sub 

 



 105 BANano – Essentials 

 
 

 

Sub Bigger992px_Matched() 

 MainSidebar.AlwaysOpen = True 

 ' and hide the hamburger button 

 MainHamburgerMenu.Element.SetStyle($"{"visibility": "hidden"}"$) 

End Sub 

 

Sub Smaller992px_Matched() 

 MainSidebar.AlwaysOpen = False 

 ' and show the hamburger button 

 MainHamburgerMenu.Element.SetStyle($"{"visibility": "unset"}"$) 

End Sub 

 

Sub WelcomePageButton_Click (event As BANanoEvent) 

 If WelcomePageName.Text = "" Then 

  Counter = Counter + 1 

  ' must end with _BAN and have only one parameter (a map) 

  ws.B4JSend("SERVERForgotHisName_BAN", CreateMap("counter": Counter)) 

  SKTools.ShowToast("Please enter your name!", "info", 3000, True) 

  Return 

 End If 

 WelcomeModalMessage.Text = "Welcome " & WelcomePageName.Text 

  

 WelcomeModal.Open 

End Sub 

 

Sub MenuList_Click (returnName As String) 

 SKTools.ShowToast("Clicked on " & returnName & "!", "info", 3000, True) 

 ' here we can load the layout of the menu item we clicked 

 Select Case returnName 

  Case "page1" 

   MainPageHolder.Element.Empty 

   MainPageHolder.Element.LoadLayout("WelcomePageLayout") 

 End Select 

 ' and close the menu, if not always open 

 If MainSidebar.AlwaysOpen = False Then 

  MainSidebar.Close 

 End If 

End Sub 

 

Sub MainHamburgerMenu_Click (event As BANanoEvent) 

 MainSidebar.Open 

End Sub 

 

' the SERVER counterpart of this BROWSER page can ask what the current value of 

counter is 

public Sub BROWSERAskForCounter() As Long 

 Return Counter 

End Sub 

 

In the Initialize method, we have to define the WebSocket connection.  This maps with the SERVER 

one we defined in AppStart: 

 

AppStart: 

 
Server.AddWebSocket("/ws/" & Server.BANano.StaticFolder & "/template" , 

"SERVERTemplate") 

 

  



 106 BANano – Essentials 

 

BROWSERTemplate: 

 
ws.Initialize("ws://" & BANano.Location.GetHost & "/ws/" & BANano.StaticFolder & 

"/template") 

 

We also have two new events: 

 
Sub WebSocket_Connected() 

 Log("Connected ===> My B4J PageId: " & BANano.GetPageID) 

  

End Sub 

 

The BANano.GetPageID is a handy method to find out which BROWSERClass is connected with 

which SERVERClass. 
 

Sub WebSocket_Disconnected(event As BANanoEvent) 

 Log("Websocket closed") 

End Sub  

 

In the WelcomePageButton_Click method, you see an example of calling a method in the 

matching SERVERClass (see further for its definition, but important to remember here is that such 

methods must have a suffix _BAN) 

 
ws.B4JSend("SERVERForgotHisName_BAN", CreateMap("counter": Counter)) 

 

Here we have also written a method that we will later call from the SERVER side (see further): 

 
public Sub BROWSERAskForCounter() As Long 

 Return Counter 

End Sub 

  



 107 BANano – Essentials 

 

13.4.2 SERVER side 

 

On the SERVER side of this class pair, we have the following code: 

 
' B4J compatible ONLY code, no BANano allowed. 

'WebSocket class 

Sub Class_Globals 

 Private ws As WebSocket 

 Private CacheReport As BANanoCacheReport 

  

End Sub 

 

Public Sub Initialize 

  

End Sub 

 

Private Sub WebSocket_Connected (WebSocket1 As WebSocket) 

 Log("Connected") 

  

 ws = WebSocket1 

  

 ' Lets update the cache with this class 

 CacheReport = Main.Server.UpdateFromCache(Me, ws) 

 Log("PageID: " & CacheReport.BANPageID) 

 Log("Comes From Cache:" & CacheReport.ComesFromCache) 

 Log("Is a reconnecting socket: " & CacheReport.IsReconnected) 

    

 ' IMPORTANT lets tell the browser we are ready to receive call from the 

browser 

 ' Uses the classic WebSocket_Connected and WebSocket_DisConnected events 

on the browser size 

 ' Use Main.Server.SendReady(ws, "ws") if you use the advanced events 

OnOpen, OnMessage, OnServerReady, ... 

 Main.server.SendConnected(ws) 

End Sub 

 

Private Sub WebSocket_Disconnected 

 Log("disconnected") 

End Sub 

 

' event raised to distribute incoming events coming from the BROWSER 

public Sub BANano_ParseEvent(params As Map) 

 Main.Server.ParseEvent(Me, ws, CacheReport.BANPageID, 

CacheReport.BANSessionID, params) 

End Sub 

 

' event raised when a file has been uploaded 

public Sub BANano_Uploaded(status As Int, fileName As String) 

 Log(fileName & " = " & status) 

 Select Case status 

  Case 200 ' OK 

  Case 500 ' was not a POST call 

  Case 501 ' file to big 

  Case 502 ' file type not allowed 

 End Select 

End Sub 

 

 

 

 

 

  



 108 BANano – Essentials 

 
' a method that can be called by the BROWSER class mathing this SERVER class 

' must have the suffix _BAN and have only ONE parameter: params As Map 

public Sub SERVERForgotHisName_BAN(params As Map) 

 Dim counter1 As Long = params.Get("counter") 

  

 ' ask for the counter from the server side 

 Dim fut As Future = ws.RunFunctionWithResult("BROWSERAskForCounter", Null) 

 Dim counter2 As Long = fut.Value 

  

 If counter1 = counter2 Then 

  Log("They are the same!") 

 Else 

  Log("They are different!") 

 End If 

End Sub 

 

Let's break the code down.   

 

First we declare a BANanoCacheReport object: 

 
Private CacheReport As BANanoCacheReport 

 

This is an object that holds some valuable information like: 

 
CacheReport = Main.Server.UpdateFromCache(Me, ws) 

Log("PageID: " & CacheReport.BANPageID) 

Log("Comes From Cache:" & CacheReport.ComesFromCache) 

Log("Is a reconnecting socket: " & CacheReport.IsReconnected) 

 

A BANanoServer holds a cache of the class into memory, in case you somehow get disconnected. 

This is done by the Main.Server.UpdateFromCache(Me, ws) method. 

 

If now for example CacheReport.IsReconnected is true, you can take a different action then if it 

is a brand-new connection.  As the class was cached, some variables the user did give a value will 

still be retained as we the class has been 'restored' by the UpdateFromCache() method.  

 

And remember the BANano.GetPageID method we used in the previous chapter about the 

BROWSER side? Well here we got the same value on the SERVER side with 

CacheReport.BANPageID! 

 

ALWAYS end the WebSocket_Connected() method with: 

Main.server.SendConnected(ws) 

This lets the BROWSER side know we are connected and we can start communicating. 

 

  



 109 BANano – Essentials 

 

We also have here two special events: 

 
public Sub BANano_ParseEvent(params As Map) 

 Main.Server.ParseEvent(Me, ws, CacheReport.BANPageID, 

CacheReport.BANSessionID, params) 

End Sub 

 

This event will parse any call from the BROWSER side and delegate it to the corresponding _BAN 

method here on the SERVER side.  

 

In this case this call in the BROWSER: 

 
ws.B4JSend("SERVERForgotHisName_BAN", CreateMap("counter": Counter)) 

 

will pass through the BANano_ParseEvent method and then will be delegated to the final 

SERVERForgotHisName_BAN method. 

 

Another event we have here is the Uploaded event.  In case we upload some file from the 

BROWSER side (using a POST call), this event will be called. 
 

public Sub BANano_Uploaded(status As Int, fileName As String) 

 Log(fileName & " = " & status) 

 Select Case status 

  Case 200 ' OK 

  Case 500 ' was not a POST call 

  Case 501 ' file to big 

  Case 502 ' file type not allowed 

 End Select 

End Sub 

 

Just like we could call the _BAN method here in our SERVER class from the BROWSER class with the 

ws.B4Jsend method, we can also call a method in the BROWSER class from the SERVER class.  For 

this, we use the normal B4J method ws.RunFunctionWithResult. 

 
Dim fut As Future = ws.RunFunctionWithResult("BROWSERAskForCounter", Null) 

Dim counter2 As Long = fut.Value 

 

 

  



 110 BANano – Essentials 

 

14 Background Workers 
 

Background Workers are a simple means for web content to run scripts in background threads. The 

worker thread can perform tasks without interfering with the user interface. In addition, they can 

perform I/O using BANanoFetch.  

 

Once created, a worker can send messages to the main thread code (that created it) by posting 

messages with BANano.SendFromBackgroundWorker() to a 

BANano_MessageFromBackgroundWorker() event handler specified by that code (and vice 

versa by using the BANano.RunBackgroundWorkerMethod()). 

 

They cannot be added in a BANanoLibrary, so it must be done in your final project. Background 

workers are actually Web Workers, but I prefer using the term 'Background Worker' as it is familiar 

to the B4J language. 

 

IMPORTANT NOTES: 

 

 

1. Background Workers can NOT access: 

- The DOM: they cannot read or modify the HTML document. In addition, you cannot access global 

variables or JavaScript functions within the page 

- The window, the document and the parent objects 

 

2. Data send to Background Workers is copied, NOT shared. So changing the value of a variable 

(that you passed with RunBackgroundWorkerMethod()) in a Background Worker will NOT be 

changed in the caller class. You will have to pass on the new value to the caller class with 

SendFromBackgroundWorker(). 

 

3. A worker cannot be run directly from the filesystem. It can only be run via a server. 

 

 

An example 

 

1. Add a new BANano Background Worker Class, let's call it MyBackgroundWorker: 

 

 



 111 BANano – Essentials 

 

 

 

Some code will be generated: 

 
'This is a BANano Background worker template class 

Sub Class_Globals 

    Private BANano As BANano 'ignore 

    Private mTimer As Timer 

    Private mTimerTickMs As Int = 1000 

End Sub 

 

' can have additional parameters 

Public Sub Initialize(TicksMs As Int) 

    ' additional javscript needed in the Worker 

    ' THESE CAN NOT CONTAIN JAVASCRIPT CODE THAT MANUPULATE THE DOM 

    ' BANano.DependsOnAsset("myCode.js") 

  

    mTimerTickMs = TicksMs 

    mTimer.Initialize("Timer", mTimerTickMs) 

    mTimer.Enabled = True 

  

End Sub 

 

Public Sub BANano_StopBackgroundWorker() 

    mTimer.Enabled = False 

  

End Sub 

 

Sub Timer_Tick 

    'do the work required 

  

  

    ' Send something back to the calling class 

    ' BANano.SendFromBackgroundWorker("SomeTag", Array(SomeValues), Null)     

  

End Sub 

 

Now we can make it do something, e.g. we want it do run in the background every second and add 

+1 to a counter.  

 

When it reaches counter mod 10, send the current value back to the calling class.  

 

We also add a method AddToCounter to immediately add some value to the counter variable from 

the calling class. The Initialize method has been changed to accept an additional parameter Title 

too. 

 
'This is a BANano Background worker class 

Sub Class_Globals 

    Private BANano As BANano 'ignore 

    Private mTimer As Timer 

    Private mTimerTickMs As Int = 1000 

    Private mCounter As Int = 0 

    Private mTitle As String 

End Sub 

 

' can have additional parameters 

Public Sub Initialize(Title As String, TicksMs As Int) 

    mTitle = Title 

    mTimerTickMs = TicksMs 

  

    mTimer.Initialize("Timer", mTimerTickMs) 



 112 BANano – Essentials 

 
    mCounter = 0 

    mTimer.Enabled = True 

End Sub 

 

Public Sub BANano_StopBackgroundWorker() 

    mTimer.Enabled = False 

End Sub 

 

Sub Timer_Tick 

    'do the work required 

    mCounter = mCounter + 1 

    Log(mTitle & ": every " & mTimerTickMs & ", Counter: " & mCounter) 

    If mCounter Mod 10 = 0 Then 

        ' can only be used in a BackgroundWorker! 

        BANano.SendFromBackgroundWorker("Mod10", Array(mCounter), Null)     

    End If 

End Sub 

 

public Sub AddToCounter(value As Int) 

    mCounter = mCounter + value 

End Sub 

 

Now, how to use our Background Worker?  

 

First me must create a couple of instances of the worker. This MUST be predefined in the 

AppStart() method. E.g. here, we are going to use two instances of our MyBackgroundWorker 

somewhere in our code later. 

 
Sub AppStart (Form1 As Form, Args() As String) 

... 

    BANano.AddBackgroundWorker("worker1", "MyBackgroundWorker") 

    BANano.AddBackgroundWorker("worker2", "MyBackgroundWorker") 

... 

End Sub 

 

When we need our Background Workers, we can start them like this, e.g. in BANano_Ready() 

 
' run de Start method of the Background Workers 

' start Worker1, and in our Initialize of our MyBackgroundWorker we need two 

parameters (Title and TicksMs) 

BANano.StartBackgroundWorker("worker1", Array("From Worker 1", 1000))  

BANano.StartBackgroundWorker("worker2", Array("From Worker 2", 2000)) 

 

Now all we have to do is add the event BANano_MessageFromBackgroundWorker() to receive 

messages from our Background Workers. e.g. In MyBackgroundWorker, we do use a 

BANano.SendFromBackgroundWorker() call to send the current counter back to our calling class 

with a Tag "Mod10". 

 
public Sub BANano_MessageFromBackgroundWorker(WorkerName As String, Tag As 

String, Value As Object, Error As Object) 

    ' the Tag will define the type of message send by the Background Worker 

    If Tag = "Mod10" Then 

        Log(WorkerName) 

        Log("Current Error: " & Error) 

        Log("Current Value: " & Value) 

    End If 

End Sub 

  



 113 BANano – Essentials 

 

Somewhere else in our code, e.g. by pressing a button, we can call the AddToCounter method from 

our class that initialized the workers with the RunBackgroundWorkerMethod() to immediately 

add 1000 to the counter. 

 
Sub BtnAdd_Click (event As BANanoEvent) 

      BANano.RunBackgroundWorkerMethod("Worker1", "", "AddToCounter", 

Array(1000)) 

End Sub 

 

We can stop the Background Workers with StopBackgroundWorker() 

 
' calls the BANano_StopBackgroundWorker event in the BackgroundWorker Class 

BANano.StopBackgroundWorker("worker1", Null) 

BANano.StopBackgroundWorker("worker2", Null) 

 

So, a BANano Background Worker is like an advanced timer. It can for example be useful for 

fetching a big JSON file, while the user can still interact with the WebApp. 

 

Helpful for such a case is the use of a CRON job instead of a Timer, discussed in the next chapter. 

  



 114 BANano – Essentials 

 

15 CRON: an Advanced Timer 
 

A Cron is Timer like functionality that runs a certain job automatically at a specified time 

following a predefined pattern. A Cron Job is the scheduled task itself. Cron jobs can be very 

useful to automate repetitive tasks. 

 

You could for example schedule in a Background Worker to sync your data every hour on a 

weekday. 

 

cronName: Name of the Cron job. This cannot be a variable and must be a literal String and 

cannot contain spaces or special characters! 

 

maxRuns: you can set a maximum number of times the Cron job should run (0 = indefinite, until 

you Stop it) 

 

pattern: Cron jobs use a special Pattern format to define them: 

 
* * * * * *  

S M H D m d 

 

S: second (0 - 59) 

M: minute (0 - 59) 

H: hour (0 - 23) 

D: day of month (1 - 31) 

m: month (1 - 12) 

d: day of week (0 - 6), 0 to 6 are Sunday to Saturday; 7 is Sunday, the same as 0 

 

Ranges: 

Ranges are two numbers separated with a "-", and they indicate all numbers from one to the other. 

e.g. 10-30 would indicate all numbers between and including 10 to 30. 

 

Interval: 

A interval is a range and a number separated by "/". The range specifies the group of values, and 

number specifies every nth value to take from that range. 

e.g. 0-10/2 would indicate every 2nd number from 0 to 10, therefore [0,2,4,6,8,10] 

 
' at 00:00:00 on every weekday run, for a total of 15 times, then stop this Cron 

BANano.CronStart("myCron", 15, "0 0 0 * * 2-6")  

 

Public Sub MyCron_Run()  

   ' do something, like a sync of your data to a server 

End Sub 

 

Public Sub btnPause_Click(event as BANanoEvent) 

     BANano.CronPause("myCron") 

End Sub  

 

Public Sub btnResume_Click(event as BANanoEvent) 

     BANano.CronResume("myCron") 

End Sub  

 

Public Sub btnStop_Click(event as BANanoEvent) 

     BANano.CronStop("myCron") 

End Sub 



 115 BANano – Essentials 

 

So we could use such a CRON job to sync for example our data from our PWA to the server in a 

Background Worker that runs every hour on week days. 

 
Sub Class_Globals 

    Private BANano As BANano 'ignore  

    Private SQL As BANanoSQL 

End Sub 

 

Public Sub Initialize() 

    ' every weekday, every hour run this CRON job 

    BANano.CronStart("myCron", 0, "0 * * * * 2-6")  

End Sub 

 

Public Sub MyCron_Run()  

   BANAno.Await(SendDataWait) 

End Sub 

 

Public Sub BANano_StopBackgroundWorker() 

    ' Stop the CRON job 

    BANano.CronStop("myCron") 

End Sub 

 

public Sub SendDataWait() 

 ' re-initialize the database in this local class 

 SQL.OpenWait("SQL", "MyDB") 

 

 Dim SQL_str as String 

 Dim Results As List  

 ' get all the records on status 1 (not yet send) 

 SQL_str = $"SELECT * FROM tData WHERE dtstatus=1"$ 

 Results = SQL.ExecuteWait(SQL_str, Null) 

    

 ' buiding our POST BANanoFetch 

 Dim fetch As BANanoFetch 

 Dim fetchOptions As BANanoFetchOptions 

 Dim fetchResponse As BANanoFetchResponse 

  

 Dim Data As Map 

 Dim Error As String 

  

 ' Make json string from the list of records  

 Dim JsonG As JSONGenerator 

 JsonG.Initialize(Results)  

  

' buiding our POST BANanoFetch to a REST API "/v1/data/upload" 

 fetchOptions.Initialize 

 fetchOptions.Method = "POST" 

 fetchOptions.Body = JsonG.ToString 

 fetchOptions.Headers = CreateMap("Content-type": "application/json; 

charset=UTF-8", "api_key": APIKey) 

  

 fetch.Initialize(APIUrl & "/v1/data/upload", fetchOptions) 

 fetch.Then(fetchResponse)   

fetch.Return(fetchResponse.Json) 

 fetch.ThenWait(Data) 

  If data.get("status") = "OK" Then 

   ' if OK, set all our records to status 2 (send) 

   SQL_str = $"UPDATE tData SET dtstatus=2 WHERE dtstatus=1"$ 

   SQL.ExecuteWait(SQL_str, Null) 

  End If 

 fetch.ElseWait(Error) 

  Log(Error) 

 fetch.End 

End Sub  



 116 BANano – Essentials 

 

16 BANanoRouter: multi page PWA 
 

BANanoRouter is a full-blown Router with paths. It allows you to organize your code in a PWA 

WebApp. It is based on the Navigo project, tuned for B4J. 

 

I personally do not use this in my PWA's.  B4J has already so much organization of your 

code build-in with its classes and modules that I do not really need it. I simply put the 

code in a normal B4J class per page and load them when needed.  By emptying the 

<body> tag and loading the new layout, I have the same effect. 

 

16.1 What is a Javascript Router? 

 

A Javascript router is a key component in many frontend frameworks (e.g. Angular, Vue, ...). It is the 

piece of software in charge to organize the states of the application, switching between different 

views. For example, the router will render the login screen initially, and when the login is successful 

it will perform the transition to the user’s welcome screen. 

 

So 'logically', you web app could be something like: 

 
App 

--- Page1 

--- Page2 

--- Page3 

 

Every page will have its own path, with its own variables and query parameters. The router is built 

so the URL in the navigation bar of the browser does not change. However, it one can still call a 

certain page with certain parameters by entering it in the navigation bar if one wants to. 

 

We can add a new 'BANanoRouter Page' from the menu: 

 

 
 

  



 117 BANano – Essentials 

 

This will generate some basic structure of a page. 

 
'This class is router page template class 

Sub Class_Globals 

    Private BANano As BANano 'ignore 

         

End Sub 

 

'Initializes the object. You can add parameters to this method if needed. 

Public Sub Initialize() 

     

End Sub 

 

' router path /testPage1 

Sub BANano_RouterHandle(url As String, data As Map, params As Map) 

    Log(url) 

    Log(data) 

    Log(params) 

     

    ' navigating to some other page 

    ' Main.router.Navigate("/testPage2/carine/?id=10&lastName=Bailleul") 

End Sub 

 

Sub BANano_RouterLeaving() As Boolean 

    Log("Do some checks...") 

     

    Return True ' (Or False If the navigation from this page is not allowed) 

End Sub 

 

It contains two special methods: 

 

BANano_RouterHandle(url As String, data As Map, params As Map) 

 

In this method you can do all your nice BANano stuff (like loading a Layout, getting data from your 

database etc) 

 

BANano_RouterLeaving() As Boolean 

 

This method is optional, and allows you to e.g. do some checks (is every field filled in?) before 

someone can leave the page and navigate to another one. If it returns True then it will go further, if 

False it will not. 

  



 118 BANano – Essentials 

 

16.2 Setup up the routes 

 

Add a BANanoRouter to the Process_Globals of your Main: 

 
Public router As BANanoRouter 

 

In BANano_Ready(): 

 

1. Initialize the router 

 
router.Initialize("/myapp",False) 

 

rootPath: the root path of your application. For example, if you are hosting the application at 

https://site.com/my/project you have to specify the following: 

 

matchAll: default false, meaning that when a match is found the router stops resolving other 

routes. If set true, it will continue searching for other matches 

 

e.g. Router.AddRoute("/foo/:id/?", "FooClass") matches "/foo/20/save" and also "/foo/20" 

 

2. Now we can add our routes, for example 

 
' here our initialize method in our page requires an extra parameter 
router.AddRoute("/testPage1", "Page1", Array("Something extra"))  

 

' e.g. handle /testPage2/carine (carine will be in the Data map in 

BANano_RouterHandle of Page2) 

router.AddRoute("/testPage2/:name", "Page2", Null)  

 

' e.g. handles /testPage2/alain/test,  /testPage2/jos/test (alain or jos will be 

in the Data map in BANano_RouterHandle of Page3) 

router.AddRoute("/testPage3/:name/test", "Page3", Null)  

 

Some more advanced examples of paths: 

 
' matches "/about-page" 
Router.AddRoute(":page", "FooClass") 

 

' matches "/foo/a/b/c" 

Router.AddRoute("/foo/*", "FooClass") 

 

' matches "/foo/bar/moo"   

Router.AddRoute("*", "FooClass") 

 

' matches "/foo/20/save" and also "/foo/20" 

Router.AddRoute("/foo/:id/?", "FooClass") 

 

3. A special one can be added if there is no match found for the path. 

 
router.NotFound("NotFound", Null) 

 

4. And finally, we start our router, going to our first page 
 

router.Start("/testPage1") 

 

  

https://site.com/my/project


 119 BANano – Essentials 

 

16.3 Navigating between pages 

 

This can be done in two ways: 

 

By code 

 
' will go to the Page2 class, with the variable "name" set to carine and the 

parameters id=10 and lastName="Bailleul" 
Main.router.Navigate("/testPage2/carine/?id=10&lastName=Bailleul")  

 

' will go to the Page3 class with the variable "name" set to jos 

Main.router.Navigate("/testPage3/jos/test")  

 

' will e.g. go to the NotFound class because it does not exist 

Main.router.Navigate("/testPage4")  

 

So, although you internally change to another URL, the text in the Navigation Bar in the browser 

will still be https://mydomain.com 

 

If you want the Navigation Bar to update, use Main.router.NavigateUpdateUrl 

 

By entering an URL in the Browsers Navigation Bar 

 

The router does use a hash system (#), so by just entering your path with the prefix /#/, it will be 

handled by the router. 

 

Example will do exactly the same as the first example here above: 

 
https://mydomain.com/#/testPage2/carine/?id=10&lastName=Bailleul" 

 

So, BANanoRouter is a 'virtual router'. You navigate using: 

 
https://localhost ' which will jump to startPage 

https://localhost/#/myapp ' note the #, will jump to startPage 

https://localhost/#/myapp/login ' note the #, will jump to login page 

 

If you use the second method (entering in the Browser Navigation Bar) you will not be 

able to use the GetURLParamDefault method directly as the # (hash) will interfere with 

this method.  

 

You can use this small trick to work around this problem. 

 
Dim Token As String = 

BANano.GetURLParamDefault(BANano.Location.GetHref.Replace("#/",""), "token", "") 

Log(Token) 

 

16.4 Removing  a route 

 

Just call RemoveRoute with the original path you used to add it. 

 
Router.RemoveRoute("/testPage2/:name")  

https://mydomain.com/
https://mydomain.com/#/testPage2/carine/?id=10&lastName=Bailleul


 120 BANano – Essentials 

 

17 Debugging 
 

17.1 Live Code Swapping 

 

BANano has some nice features to debug projects.  It can for example make use of B4Js Live Code 

Swapping feature! 

 

Live Code Swapping is only available in the final PWA project, not in BANanoLibraries or 

BANanoServer projects 

 

To activate this feature, you just have to set this parameter in Appstart: 

 
' enable live code swapping 

BANano.TranspilerOptions.EnableLiveCodeSwapping = True 

 

Now you can run de project in debug mode and make live changes to the B4J code.  When you 

press Save, BANano will try to make the changes to the transpiled JavaScript code.  By pressing F5 

in the browser, the new code will be loaded.   

 

You can even make changes in the Abstract Designer and on save the new layouts will be used. 

 

Live Code Swapping is much faster than completely recompile your code, as it will only transpile 

the changes and e.g. not the BANanoLibraries you used in the project. 

 

17.2 Making use of the new B4J 'jump' feature in the logs 

 

Since B4J v9.30, you can click into the log and it will jump to the line where the error (or log line) is 

done. 

 

BANano v7.35+ can also use this feature.  As it doesn't have access to the IDE, a little trick has to be 

used.   

 

By including the following snippet (must be exactly this!) on top of your AppStart() method, the 

jumps will also work with BANano. 

 
#if Debug 

 ' MUST be literally this line if you want to use the B4J Logs jump to code 

feature! 

 Log("BANanoLOGS") 

#End if 

  



 121 BANano – Essentials 

 

In the browsers log, you will also see on which line something happened (e.g. a log) 

 

 
 

This is the result of Log(myList) in the Main module at line 124. 

 

17.3 JavaScript Breakpoints 

 

You can add a breakpoint in the JavaScript code by using the BANano.BP method. 

 

It stops the execution of JavaScript in Debug Mode. This command is ignored if in release mode. 

 

Use the Developer Tools in the browser to inspect e.g. variable values 

 

17.4 Using the Browser Developer Tools 

 

Meet your next Best Friend when developing Web apps: The Chrome Devtools! 

 

Every browser has some tools to help the developer in debugging their apps.  I will go into the 

ones in Chrome that are important for debugging (or resetting) a BANano PWA app. 

 

To open up de Chrome Developer Tools, press F12 in the browser.  A new panel will open up: 

 

 
 

Some of the important tabs and functionalities are Console, Network, Application and Lighthouse. 

  



 122 BANano – Essentials 

 

17.4.1 The Console Tab 

 

The Console has two main uses: viewing logged messages and running JavaScript. 

 

Viewing logged messages 

 

Web developers often log messages to the Console to make sure that their code is working as 

expected. To log a message, you insert an expression like Log("Hello, Console!") into your 

B4J code. When the browser executes the BANano transpiled JavaScript and sees an expression like 

that, it knows that it's supposed to log the message to the Console.  

Web developers log messages for 2 general reasons: 

• Making sure that code is executing in the right order. 

• Inspecting the values of variables at a certain moment in time. 

This is also the place where you will see warnings and errors in the Transpiled JavaScript. 

 

Here we see a warning the Live Code Swapping does not work if we don't run the Web App from a 

real Web Server and also and error that a the file banano6.59.js was not found. 

DevTools also shows some warnings that .map files are missing.  These warnings can be ignored. 

You can view Live Expressions by clicking on the little eye icon . The Live Expression text box 

will appear. 

For example, we can follow the active element in our Web App by typing 
document.activeElement 

 

When we now use the Web App and we click on something, we can see which element is active.  In 

this case it is button#btnproject.notselectable, so we know it is on the SKButton with the 

id btnproject we clicked.  



 123 BANano – Essentials 

 

Running JavaScript 

The Console is also a realtime Javascript Evaluation tool. You can run JavaScript in the Console to 

interact with the page that you're inspecting. For example, you can type: 

Document.querySelector('h1').textContent = 'My New Document Title'; 

in the console to change the page's title. 

If you activated the 'jump' feature snippet, the logs are formatted in such a way that you can see 

the original B4J module and line where the log was done. The logged expressions are also real 

JavaScript objects. 

For example if you logged a B4J list, the browser will let you inspect the content of that list as an 

object: 

 

Here is the result of a Log(results) where results is a list containing 6 items.  You can open up 

this object by clicking on the little arrow next to [Main: 124] and inspecting its contents. 

  



 124 BANano – Essentials 

 

17.4.2 The Network Tab 

In general, use the Network panel when you need to make sure that resources are being 

downloaded or uploaded as expected. The most common use cases for the Network panel are: 

• Making sure that resources are actually being uploaded or downloaded at all. 

• Inspecting the properties of an individual resource, such as its HTTP headers, content, size, 

and so on. 

 

Here we can see some very useful information: 

Each row of the Network Log represents a resource. By default the resources are listed 

chronologically. The top resource is usually the main HTML document. The bottom resource is 

whatever was requested last. 

 

Each column represents information about a resource.  

 

• Status. The HTTP response code. 

• Type. The resource type. 

• Initiator. What caused a resource to be requested. Clicking a link in the Initiator column 

takes you to the source code that caused the request. 

• Time. How long the request took. 

• Waterfall. A graphical representation of the different stages of the request. Hover over a 

Waterfall to see a breakdown. 

 

In the example above, we can clearly see that everyting is running on HTTP/2 (h2) and that our 

PWA is working correctly because all resources where loaded from the Service Worker. 

  



 125 BANano – Essentials 

 

On the bottom we can also so see our Web App is nicely optimized! 

 

 
 

Load time is about 200ms (everything above 1 second is considered bad.  My thumb of rule is 

trying to get it under 500ms) and we also made only 11 requests to the server. 

 

This is also the place where we can simulate a slower connection, or even if there is no internet 

connection. 

 

 
 

If we set it to offline, we can test if our PWA will keep working, or how it will behave on a slow 3G 

connection. 

 

When testing a Web App, I mostly check the Disable cache checkbox. This will force the browser to 

reload all assets on refresh. 

 

If running in PWA mode (with Service Worker), this will not always reload all assets as 

they will keep being retrieved from the PWA's cache! See the next chapter (The 

Application Tab) on how to resolve this. 

 

Because of this 'caching' done by the Service Worker, it is easier to run in B4J Debug Mode while 

developing your Web App.  In that case the Service Worker is disabled. 

 

Additional, when running in B4J Debug Mode, BANano will add your original B4J code as 

comments in the transpiled JavaScript file.  This makes it much easier to locate a problem. 

 

Suppose we have this code in our Web App (where hello does not exist): 

 
108 Dim someObject As BANanoObject 

109 someObject.Initialize("hello") 

110  

111 Dim SomeField As String 

112 SomeField = someObject.GetField("somefield").Result 

113 Log(SomeField) 

  



 126 BANano – Essentials 

 

We will get an error in the browser: 

 

 
 

By clicking on the link on the right, we will jump to the transpiled JavaScript code: 

 

 
 

As you can see, your original B4J code (and its line number) will be show on top of where the error 

occurred we be visible. 

 

In this case the error is on line 109: someObject.Initialize( {27} ) 
 

Note: Strings will not appear, but will show something like {27}. This is a transpiler limitation. 

 

We we go back to our B4J code and check line number 109, we will see the same line causing the 

error: 

 
109 someObject.Initialize("hello") 

 

If the TranspilerOption EnableLiveCodeSwapping = true, you can now simply make the correction 

in your code, press Save and reload the page in the browser without having to recompile the whole 

thing! 

 
 



 127 BANano – Essentials 

 

17.4.3 The Application Tab 

 

The Application tab is especially useful in PWA modus.  It is the place where you inspect Cookies, 

Storages, Databases, Caches and the Service Worker. 

 

 
 

Service Workers 

 

This is the place where you check if your Service worker is installed and running. If the Status is 

anything else than green (activated and is running), something went wrong.  You will then have to 

check the console and network tabs to try to fgind out what. 

 

As soon as there is some error in your code or a file is missing, the PWA Service Worker 

installation will fail! 

 

It is not a guarantee that you have already a full PWA (see further), but it is a first indication at least 

your assets are cached for offline modus. 

 

  



 128 BANano – Essentials 

 

This is also the place to reset our Web App's caches. This is for example needed if we have added 

new assets (like a JavaScript file or an image). We can do that by unregistering the Service Worker. 

 

 
 

Databases 

 

If we are using BANanoSQL, we can look at the data saved in the local database: 

 

 
 

On the left are the tables we created and on the right its contents. 

 

Sometimes, it my be needed to remove the database.  You can do this by clicking 'Delete 

database'. 

 

 



 129 BANano – Essentials 

 

An interesting item is also the Cache Storage.  Here we can see which files are actually cached by 

our PWA: 

 

 
 

17.4.4 The Security Tab 

 

You can check here if your PWA is running secure (this means your domain has a valid Certificate).  

PWA's must run on a valid HTTPS domain! 

 

Example of a certificate installed correctly: 

 

 
 

Note: this manual will not go into creating and installing Certifcates.  It is strongly advised to talk 

to an expert in this field (which I am not). For our Web Apps, we have an external company taking 

care of this.  



 130 BANano – Essentials 

 

17.4.5 The Lighthouse Tab 
 

This is the tab that will tell you if you have done everything right to make this Web App a real 

installable PWA. 

 

Check the Progressive Web App checkbox first: 

 

 
 

Now click on 'Generate report'.  The Chrome DevTools will start to analyse your PWA and give you 

a report. 

 

If you have followed everything in this manual, created the correct icons, splash screens and 

activated the Service Worker, your report will look something like this: 

 

 



 131 BANano – Essentials 

 

A final check to do: 

 

For your Web App to be a truly installable PWA, a new 'install' icon should appear in the browsers 

naviagation bar in Chrome: 

 

 
 

This allows the user to install the PWA on their Desktop, or as an App icon on their Mobile Device. 

 

Note: 

 

Not all browsers or OS's allow PWA's, especially Apple is very peculiar about that. Here are the 

combos that do work: 

 

Windows + Chrome (or Edge) 

MacOS + Chrome 

Android + Chrome 

iOS + Safari 

 

Apple does allow Chrome on Desktop to install a PWA (but not Safari), but  on iOS they 

do not allow Chrome and require Safari!  Go figure… 

 

Installing on Safari on iOS does require some steps to go through. Navigate to the website you 

want to add as a PWA in Safari. Then tap the ‘Share’ button, scroll down and tap ‘Add to Home 

Screen.’ Enter the name for the app then tap 'Add'. The PWA will show up on your home screen 

like a native iOS app. 

 

 



 132 BANano – Essentials 

 

17.4.6 Testing your PWA on emulated device sizes 

 

It is always good to test your PWA's on real devices, but Chrome Devtools give you some help that 

can be useful in development. 

 

You can emulate all kind of device sizes in the Chrome browser. 

 

 
 

You can activate this view by clicking on the little  icon and pick (or create) Device Sizes from 

the dropdown box. 

  



 133 BANano – Essentials 

 

18 BANanoSkeleton: UI Component library 
 

BANanoSkeleton is a very lightweight UI library with currently about 40 components and tools.   

 

18.1 Adding UI components to your Web app 

 

As we've seen before, we can add componets to layouts in the B4J Abstract Designer. But these 

components can also be added with code. 

 

For example, we can add a new button like this to the tag with id 'parentid': 

 
Dim btn as SKButton 

btn.Initialize(me, "btn", "btn") 

btn.Text = "Hello" 

btn.Flavor = "button-danger" 

 

btn.AddToParent("parentid")  

 

… 

 

Sub btn_Click (event As BANanoEvent) 

 BANano.Alert("Hello") 

End Sub 

 

We can also add extra events, not exposed by the SKButton. For example, a hover effect that turns 

the button green on mouse hover. Hover is an mouseenter and a mouseleave event, but they are 

not accessible by default by the SKButton component. 

 

So we grab the BANanoElement from the btn (btn.Element) and add some events manually. 

 
btn.AddToParent("parentid")  

 
Dim event As BANanoEvent 

' we use the BANano.CallBackExtra method because we want, next to the 

normal event parameter, also pass our btn 

btn.Element.AddEventListener("mouseenter", BANano.CallBackExtra(Me, 

"handleEnter", Array(event), Array(btn)), True) 

btn.Element.AddEventListener("mouseleave", BANano.CallBackExtra(Me, 

"handleLeave", Array(event), Array(btn)), True) 

 

Sub HandleEnter(event As BANanoEvent, btn As SKButton) 'ignore 

 btn.Flavor = "button-success" 

End Sub 

 

Sub HandleLeave(event As BANanoEvent, btn As SKButton) 'ignore 

 btn.Flavor = "button-danger" 

End Sub 

 

Extra events or other manipulations to the Element must be set AFTER the .AddToParent 

call! 

 

  



 134 BANano – Essentials 

 

If we use Hover often in our program for multiple components, we can write a helper method: 

 
Sub AddHover(component As BANanoObject, Enter As String, Leave As String)  

 Dim event As BANanoEvent 

 ' SKButton.Element is a property so we have to use the get prefix 

 Dim tmpElement As BANanoElement = component.RunMethod("getelement", 

Null) 

 tmpElement.AddEventListener("mouseenter", BANano.CallBackExtra(Me, 

Enter, Array(event), Array(component)), True)  

 tmpElement.AddEventListener("mouseleave", BANano.CallBackExtra(Me, 

Leave, Array(event), Array(component)), True) 

End Sub 

 

Now we can use this helper method as: 
 

AddHover(btn, "HandleEnter", "HandleLeave") 'ignore 

 

It is advised to unzip the BANanoSkeleton.b4xlib and dive into the source code.  It has 

some great examples on how you can make custom components yourself! 

  



 135 BANano – Essentials 

 

18.2 The GRID system 
 

BANanoSkelton has a row and 12 column grid system like Bootstrap, but with a slightly different 

approach. 

 

The grid is a 12-column fluid grid with a max width of 960px if used in an SKContainer, that shrinks 

with the browser/device at smaller sizes. The syntax is simple and it makes coding responsive much 

easier.  It will wrap responsive at 550px. 

 

 
 

SKColumns should always be the immiiate child of an SKRow. 

 

There are also a couple of shorthand column types: 

 
on-third column 

two-thirds column 

one-half column 

 

You can also change the Offset of a column with the Offset property. 
 

While other frameworks support nested rows, nesting rows within columns is not recommended as 

it can have different results than expected.  This is because of the margins used with columns. If 

you see a column wrap unexpected in a more complex layout, I sometimes find it easier to think in 

an 11-column system. 

 

Columns adding up to less than 12 will be stretched to 12 columns. If for example you only have a 

column set to 'one column', it will be stretched to the end.  

 

The 'No Responsive Wrap' property of an SKColumn 

 

If you don't want a column to act responsive, you can set this property to true.  



 136 BANano – Essentials 

 

18.3 Styling 

 

BANanoSkeleton has some quick methods to do some basic global styling. The can be set with the 

SKTools module in AppStart(). 

 

Example: 

 
SKTools.SetBaseColor("#FF8800") 

SKTools.SetMenuBackgroudColor("#393f46") 

' override the default 960px width 

SKTools.SetContainerMaxWidth(1024)  

 

' write the theme 

SKTools.WriteTheme 

 

It is important to end with SKTools.WriteTheme, as this will generate a css file with the 

changes you made. 

 

You can make individual changes to the components using the Style and Class properties of each 

component.  

 

For example in the Abstract Designer on an SKLabel, we can set the Style property to: 

 
color: white;float: left 

 

which will make the text white and floating to the left. 

 

You can also make these changes in code: 

 
myLabel.Element.SetStyle($"{"color": "white", "float": "left"}"$) 

 

IMPORTANT: when setting the Style in code, you must pass a valid Json String! 

 

In many cases, just writing some inline CSS makes your styling re-usable. 

 

We could for example write (mind the dot before whiteleft to indicate it is a class): 

 
#If CSS 

.whiteleft { 

 color: white; 

 float: left; 

} 

#End If 

 

And use it (in the Abstract Designer or in code): 

 
myLabel.Element.AddClass("whiteleft")  



 137 BANano – Essentials 

 

18.4 The components 

 

BananoSkeleton has currently over 40 unique and very lightweight components in it. Most of them 

are quite common, like SKLabel, SKCheckbox or SKButton. But some of them may require some 

more explanation on how to use them. 

 

SKBarcodeScanner 
 

Starting: 

 

The SKBarcodeScanner returns a promise you have to wait for (time to start the camera) 

 
Private Sub btnScan_Click (returnName As String) 

  

 If SKBarcodeScanner1 <> BANano.UNDEFINED Then 

  Dim tmpFormats As BANanoObject 

   

  ' Supported Barcodes formats: 

' QR_CODE, AZTEC, CODABAR, CODE_39, CODE_93, CODE_128, DATA_MATRIX, 

MAXICODE, ITF, EAN_13, EAN_8, PDF_417, RSS_14, RSS_EXPANDED, UPC_A, 

UPC_E, UPC_EAN_EXTENSION 

  tmpFormats.Initialize6($"[ 

Html5QrcodeSupportedFormats.CODE_128,Html5QrcodeSupportedFormats.CODE_39, 

   ]"$) 

  BANano.Await(SKBarcodeScanner1.StartWait(tmpFormats)) 

 End If 

End Sub 

 

Result: 

 

The result of a scan is returned in the _Result event. 

 
Private Sub SKBarcodeScanner1_Result (decodedText As String, 

decodedFormat As String)  

 

End Sub 

 

If the result is not accepted by you WebApp, you need to reset the BarcodeScanner so the user can 

retry another one. 
 

If SKBarcodeScanner1 <> BANano.UNDEFINED Then SKBarcodeScanner1.Reset  

 

Stopping: 

 

Stop the camera.  This is also a promise so you should wait and give the app the time to close the 

camera. 
 

If SKBarcodeScanner1 <> BANano.UNDEFINED Then 

BANano.Await(SKBarcodeScanner1.StopWait)  

  



 138 BANano – Essentials 

 

SKTakePicture 

 

Starting: 

 

Start the camera.  This is a promise so you have to wait until your Camera is started. 

 
BANano.Await(SKTakePicture1.StartWait)  

 

Taking a picture: 

 

The SKTakePicture does immidately return a DataURL (Base64) String. Specify the format you want 

e.g. "image/jpeg" or "image/png" 

 
Dim DataURL As String = SKTakePicture1.TakePicture("image/jpeg")   

 

You can also take immediately receive the dataURL resized of at a certain aspect ratio cropped 

from the center (e.g. 1 = square). 

 
.TakePictureResize(format As String, width As Long, height As Long) As 

String  

 

.TakePictureAspectRatio(format As String, width As Long, height As Long, 

aspectRatio As Double) As String  

 

Stopping: 

 

Stops the camera.  This is a promise so you have to wait until your Camera is closed. 

 
BANano.Await(SKTakePicture1.StopWait)  

  



 139 BANano – Essentials 

 

18.5 SKTools methods 

 

SKTools has, next to the styling, some other handy methods. 

 

ShowToast(message As String, toastType As String, timeout As Object, dismissible As Boolean) 

 

Shows a toast message 

 

toastType: default, success, danger, warning, info 

timeout: a number in ms, or true/false 

dismissable: allows the user to close the toast before the timeout (if set) 

 

Pause(RawHTML As String) 

 

Show an overlay. You can add whatever HTML that will be shown in the middle of the window. 

 

Example: 

 
' some CSS that shows a 'communication' animation: 

#If CSS 

.otabox{ 

    width:240px; 

    height:150px; 

    position:absolute; 

    top:calc(50% - 25px); 

    top:-webkit-calc(50% - 25px); 

    left:calc(50% - 120px); 

    left:-webkit-calc(50% - 120px) 

} 

.otatext{ 

    font-family:Lato,sans-serif; 

    color:#fff; 

    font-weight:300; 

    font-size:30px; 

    position:absolute; 

    top:calc(50% - 105px); 

    top:-webkit-calc(50% - 105px); 

    left:calc(50% - 100px); 

    left:-webkit-calc(50% - 100px); 

    oapcity:1; 

    -webkit-animation:fade-in-out 2.5s infinite; 

    -moz-animation:fade-in-out 2.5s infinite; 

    -o-animation:fade-in-out 2.5s infinite; 

    animation:fade-in-out 2.5s infinite 

} 

.otacomp{ 

    position:absolute; 

    top:0; 

    width:80px; 

    height:55px; 

    border:3px solid #fff; 

    border-radius:5px 

} 

.otacomp:after{ 

    content:''; 

    position:absolute; 

    z-index:5; 

    top:19px; 

    left:5px; 

    width:65px; 



 140 BANano – Essentials 

 
    height:10px; 

    border-radius:360px; 

    border:3px solid #fff 

} 

.otaloader{ 

    position:absolute; 

    z-index:5; 

    top:26px; 

    left:12px; 

    width:8px; 

    height:8px; 

    border-radius:360px; 

    background:#fff; 

    -webkit-animation:otaloader 5s infinite linear .5s; 

    -moz-animation:otaloader 5s infinite linear .5s; 

    -o-animation:otaloader 5s infinite linear .5s; 

    animation:otaloader 5s infinite linear .5s 

} 

.otacon{ 

    position:absolute; 

    top:28px; 

    left:85px; 

    width:100px; 

    height:3px; 

    background:#fff 

} 

.otabyte{ 

    position:absolute; 

    top:25px; 

    left:80px; 

    height:9px; 

    width:9px; 

    background:#fff; 

    border-radius:360px; 

    z-index:6; 

    opacity:0; 

    -webkit-animation:otabyte_animate 5s infinite linear .5s; 

    -moz-animation:otabyte_animate 5s infinite linear .5s; 

    -o-animation:otabyte_animate 5s infinite linear .5s; 

    animation:otabyte_animate 5s infinite linear .5s 

} 

.otaserver{ 

    position:absolute; 

    top:22px; 

    left:185px; 

    width:35px; 

    height:35px; 

    z-index:1; 

    border:3px solid #fff; 

    background:#fff; 

    border-radius:360px; 

    -webkit-transform:rotateX(58deg); 

    -moz-transform:rotateX(58deg); 

    -o-transform:rotateX(58deg); 

    transform:rotateX(58deg) 

} 

.otaserver:before{ 

    content:''; 

    position:absolute; 

    top:-47px; 

    left:-3px; 

    width:35px; 

    height:35px; 

    z-index:20; 

    border:3px solid #fff; 



 141 BANano – Essentials 

 
    background:#fff; 

    border-radius:360px 

} 

.otaserver:after{ 

    position:absolute; 

    top:-26px; 

    left:-3px; 

    border-left:3px solid #fff; 

    border-right:3px solid #fff; 

    width:35px; 

    height:40px; 

    z-index:17; 

    background:#fff; 

    content:'' 

} 

@-webkit-keyframes otabyte_animate{ 

    0%{ 

        opacity:0; 

        left:80px 

    } 

    4%{ 

        opacity:1 

    } 

    46%{ 

        opacity:1 

    } 

    50%{ 

        opacity:0; 

        left:185px 

    } 

    54%{ 

        opacity:1 

    } 

    96%{ 

        opacity:1 

    } 

    100%{ 

        opacity:0; 

        left:80px 

    } 

} 

@-moz-keyframes otabyte_animate{ 

    0%{ 

        opacity:0; 

        left:80px 

    } 

    4%{ 

        opacity:1 

    } 

    46%{ 

        opacity:1 

    } 

    50%{ 

        opacity:0; 

        left:185px 

    } 

    54%{ 

        opacity:1 

    } 

    96%{ 

        opacity:1 

    } 

    100%{ 

        opacity:0; 

        left:80px 



 142 BANano – Essentials 

 
    } 

} 

@-o-keyframes otabyte_animate{ 

    0%{ 

        opacity:0; 

        left:80px 

    } 

    4%{ 

        opacity:1 

    } 

    46%{ 

        opacity:1 

    } 

    50%{ 

        opacity:0; 

        left:185px 

    } 

    54%{ 

        opacity:1 

    } 

    96%{ 

        opacity:1 

    } 

    100%{ 

        opacity:0; 

        left:80px 

    } 

} 

@keyframes otabyte_animate{ 

    0%{ 

        opacity:0; 

        left:80px 

    } 

    4%{ 

        opacity:1 

    } 

    46%{ 

        opacity:1 

    } 

    50%{ 

        opacity:0; 

        left:185px 

    } 

    54%{ 

        opacity:1 

    } 

    96%{ 

        opacity:1 

    } 

    100%{ 

        opacity:0; 

        left:80px 

    } 

} 

@-webkit-keyframes otaloader{ 

    0%{ 

        width:8px 

    } 

    100%{ 

        width:63px 

    } 

} 

@-moz-keyframes otaloader{ 

    0%{ 

        width:8px 



 143 BANano – Essentials 

 
    } 

    100%{ 

        width:63px 

    } 

} 

@-o-keyframes otaloader{ 

    0%{ 

        width:8px 

    } 

    100%{ 

        width:63px 

    } 

} 

@keyframes otaloader{ 

    0%{ 

        width:8px 

    } 

    100%{ 

        width:63px 

    } 

} 

@-webkit-keyframes fade-in-out{ 

    0%{ 

        opacity:1 

    } 

    50%{ 

        opacity:0 

    } 

    100%{ 

        oapcity:1 

    } 

} 

@-moz-keyframes fade-in-out{ 

    0%{ 

        opacity:1 

    } 

    50%{ 

        opacity:0 

    } 

    100%{ 

        oapcity:1 

    } 

} 

@-o-keyframes fade-in-out{ 

    0%{ 

        opacity:1 

    } 

    50%{ 

        opacity:0 

    } 

    100%{ 

        oapcity:1 

    } 

} 

@keyframes fade-in-out{ 

    0%{ 

        opacity:1 

    } 

    50%{ 

        opacity:0 

    } 

    100%{ 

        oapcity:1 

    } 

} 



 144 BANano – Essentials 

 
#End If 

 
Dim Anim As String = $"<div class="otatext">SENDING</div><div 

class="otabox"><div class="otacomp"></div><div 

class="otaloader"></div><div class="otacon"></div><div 

class="otabyte"></div><div class="otaserver"></div></div>"$ 

 

SKTools.Pause(Anim) 

 

Resume() 

 

Removes the overlay, previously set by SKTools.Pause() 

 
SKTools.Resume 

 

GetLocation(Options As Object) As BANanoGeoPosition 

 

Gets the current location of the user 

 

IsPositionInCircle(posLat As Double, posLon As Double, circleLat As Double, circleLon As Double, 

radiusInMeter As Long) As Boolean 

 

returns is a certain Latitude/Longitude is within a circle around another Latitude/Logitude 

 

  



 145 BANano – Essentials 

 

19 Troubleshooting 
 

First thing you have to do is check the B4J log for errors and the browser log (see the 

Debugging chapter). 

 

But sometimes, you can't see anything wrong immediately but still the code does not do what you 

would expect. 

 

Here are some common issues you may encounter: 

 

19.1 Component does not update in code  

 

You may see an error like this in the browsers console: 

 

 
 

The reason may be that the component has the AutoID/Name checked in the Abstract Designer.  

Therefor, BANano has given it a random name. 

 

 
 

If checked, this component was set to get a random name and it isn't SKImage1 any more. 

 

So this code has no meaning for JavaScript: 

 

SKImage1.Src = "./assets/img1.png" 

 

If you do want to use a component in your code, make sure you uncheck AutoID/Name. 

 

19.2 Web App doesn't update after recompiling 

 

After you recompile and refresh the brower, your changes don't appear to be made. 

 

Try pressing CTRL+F5 to hard refresh. 

 

If you use a Service Worker, you may have to unregister it. 

 



 146 BANano – Essentials 

 

 
 

19.3 Browser log shows transpiling error 

 

In some cases, you may see an error in the browsers log that the transpiler made a mistake. 

 

For example, if you do this: 

 
component.RunMethod("getelement", Null).AddEventListener("mouseenter", 

BANano.CallBackExtra(Me, Enter, Array(event), Array(component)), True) 

 

You see this in the browsers log: 
 

 
 

The transpiler may not be able to do it as it is to complex and you will get an error. Most of the 

time is because a single B4J line may result in multiple JavaScript lines of code. 
 

This just means you should split up the code a little bit.  For example here the transpiler has 

trouble with the AddEventListener method chained to the RunMethod. 
 

This will work: 
 

Dim tmpElement As BANanoElement = component.RunMethod("getelement", Null) 

tmpElement.AddEventListener("mouseenter", BANano.CallBackExtra(Me, Enter, 

Array(event), Array(component)), True) 

  



 147 BANano – Essentials 

 

20 (Advanced) Tips & Tricks 
 

Here are some advanced tips and tricks you can use into your own WebApp code. These are 

subjects that have come up in the B4X forum and where sometimes no immidate BANano solution 

was available. 

 

20.1 A BANanoFetch with a timeout 

 

Javascript has no build-in method to do this, so we have to write one ourselves. 

 

Timeout is determined by the browser (e.g. Chrome is 300 seconds, firefox = 90 seconds, etc...) 

 

But we can make use of the PromiseRace capabilities to do this (there is indeed another solution 

with the experimental AbortController, but I personally prefer the Race way). 

 

What you do is make two promises: your Fetch and a TimeOut. Then we let both promises race 

against each other. The first one wins! 

 

For this example I wrote a Fetch3000 with a Sleep(3000) in it to emulate a slow fetch. 

 
Sub Process_Globals 

      ' to hold our TimeOut object 

      Public myTimeOut As Object 

End Sub 

 

' A new fetch method with a Timeout 

Sub FetchTimeout(url As String, options As BANanoFetchOptions, timeout As Long) 

As BANanoPromise 

    Dim prom As BANanoPromise = BANano.PromiseRace(Array(TimeOutAfter(timeout), 

Fetch3000(url, options))) 

    Return prom 

End Sub 

 

#Region Fetch Promise 

Sub Fetch3000(url As String, options As BANanoFetchOptions) As BANanoPromise 

    Dim prom As BANanoPromise 

    ' with ...Wait because we use a Sleep method in it to fake the delay 

    prom.CallSub(Me, "FetchDelayed3000Wait", Array(url, options))     

    Return prom 

End Sub 

 

Sub FetchDelayed3000Wait(url As String, options As BANanoFetchOptions) 

    Dim response As BANanoFetchResponse 

    Dim error As Object 

     

    Dim Fetch As BANanoFetch 

    Fetch.Initialize(url, options) 

    Fetch.ThenWait(response) ' wait because of the sleep method 

        ' clear the TimeOut 

        BANano.Window.ClearTimeout(myTimeOut) 

        ' fake 3 seconds delay 

        Sleep(3000)         

        If response.OK Then 

            BANano.ReturnThen(response) 

        Else ' some other error 

            BANano.ReturnElse("Whoops, something else went wrong (file did not 

exist?)...") 



 148 BANano – Essentials 

 
        End If         

    Fetch.Else(error) 

        ' clear the TimeOut         

        BANano.Window.ClearTimeout(myTimeOut) 

        ' return the error 

        BANano.ReturnElse(error) 

    Fetch.end         

End Sub 

#end Region 

 

#Region TimeOut Promise and Helpers 

Sub TimeOutAfter(timeout As Long) As BANanoPromise 

    Dim prom As BANanoPromise 

    prom.CallSub(Me, "DoTimeOutAfter", Array(timeout)) 

    Return prom 

End Sub 

 

Sub DoTimeOutAfter(timeout As Long) 

    myTimeOut = BANano.Window.SetTimeout(BANano.CallBack(Me, "DoTimeout", 

Null),timeout) 

End Sub 

 

Sub DoTimeout() 'ignore     

     BANano.ReturnElse("Request Time-out") 

End Sub 

#End Region 

 

Some tests with our new FetchTimeout method: 

 

the timeout happens before the file is fetched: 

 
Dim response As Object 

Dim error As Object 

' 2000 timeout < 3000 delayed fetch 

Dim prom As BANanoPromise = FetchTimeout("favicon.ico", Null,2000) 

prom.Then(response) 

    Log(response) 

prom.Else(error) 

    Log(error) ' enters here because of the timeout or for example because the 

file did not exist 

prom.end 

 

the fetch is faster than the timeout: 

 
Dim response As Object 

Dim error As Object 

' 5000 timeout > 3000 delayed fetch 

Dim prom As BANanoPromise = FetchTimeout("favicon.ico", Null,5000) 

prom.Then(response) 

    Log(response) ' enters here 

prom.Else(error) 

    Log(error) ' enters here if something else went wrong, like file did not 

exist 

prom.end 

  



 149 BANano – Essentials 

 

20.2 Cropping an image before upload 

 

Snippet that uses the "createImageBitmap method in JavaScript to crop an image. 

 
Dim canvasElem As BANanoElement = body.Append($"<canvas 

id="myCanvas"></canvas>"$).Get("#myCanvas") 

    Dim canvasObj As BANanoObject = canvasElem.ToObject.RunMethod("getContext", 

"2d") 

     

Dim fetch As BANanoFetch 

Dim fetchResponse As BANanoFetchResponse 

Dim blob As BANanoObject 

Dim bitmap As BANanoObject 

fetch.Initialize("./assets/banano.jpg",Null) 

fetch.Then(fetchResponse) 

    Return fetchResponse.Blob 

fetch.Then(blob)     

    Dim CreateBitmap As BANanoObject 

    CreateBitmap.Initialize("createImageBitmap")     

    ' crop from top left, 64 pixels width en height  

    Return CreateBitmap.Execute(Array(blob,0, 0, 64, 64))  

fetch.Then(bitmap) 

    canvasObj.RunMethod("drawImage", Array(bitmap,0,0))         

    Dim data As String = canvasElem.ToObject.RunMethod("toDataURL", Null).Result 

     

    ' now we can upload the base64 data back to your server to save it to a file 

    ... 

fetch.End 

 

20.3 Getting non-standard attributes 

 

In JavaScript, attributes to a html tag need to hold themselves to certain rules.  For example, an 

attribute can not start with a @ or a #.  However, some frameworks like Vue brake these rules and 

do write them anyway.  This is a snippet where you can read these attributes using the 

DOMParser. 

 
public Sub GetAttribute(element As BANanoElement, attrName As String) As String 

    Dim DOMParser As BANanoObject 

    DOMParser.Initialize2("DOMParser", Null) 

    

    Dim parents() As BANanoElement = element.Parent("") 

    Dim obj As BANanoObject = DOMParser.RunMethod("parseFromString", 

Array(parents(0).GetHTML,"text/html")).Result 

    Return 

obj.RunMethod("getElementById",element.Name).GetField("attributes").GetField(att

rName).GetField("nodeValue").Result    

End Sub 

 

Usage: 

 

Where the html looks like this: 
 

<div id="myelem" @value="hello"></div> 

 

Log(GetAttribute(myElement, "@value")) 

 

 
 



 150 BANano – Essentials 

 
 

20.4 [BANRAW] and [BANCLEAN] in SmartStrings 

 

Sometimes writing something in pure BANano is to complex to do and it would be much easier if 

we could just copy and paste some JavaScript snippet into our project.  Luckely in B4X, we got 

SmartStrings! 

 

There are two prefixes you can use in these SmartStrings: 

 

[BANRAW] 

 

Acts just like when you give the raw prefix to a property in the Abstract Designer (see 11.1.1). 

 

The enters and double quotes will be escaped in the Transpiled JavaScript code. 

 

Example: 

 
Dim options As BANanoObject     

options.Initialize($"[BANRAW]{ 

  el: '#vm', 

  template: `<div>{{ item.count }}<input type="button" value="Click" 

@click="updateCount"/></div>`, 

  data: { 

    item: {} 

  }, 

  beforeMount () { 

    this.$data.item.count = 0; 

  }, 

  methods: { 

    updateCount () { 

      this.$data.item.count++; 

    } 

  } 

}"$) 

Dim vm As BANanoObject 

vm.Initialize2("Vue", options) 

 

Transpiling without [BANRAW], would cause an illegal enter into the JavaScript code (as 

SmartStrings are taking over AS IS, including enters and double quotes). 

 

[BANCLEAN] 

 

[BANCLEAN] will strip all enters from your SmartString. 

 

Example: 

 
Dim s As String = $"[BANCLEAN] 

this is 

 a test"$ 

 

Result: 

 
"This is a test" 

  



 151 BANano – Essentials 

 

20.5 Check if an object has a certain function and execute it 

 

With this snippet you can check if a object has a certain function available. If yes, run it. 

 
Dim this As BANanoObject 

this.Initialize("this") ' get the current class 

     

Dim func As BANanoObject 

func = this.GetFunction("getnextid") '  lowercased if it is a B4J method 

     

If BANano.IsFunction(func) then 

     Log(Func.Execute(null)) 

End If 

 

 

20.6 Getting the Transpiled class name and use it 

 

You can get the transpiled class name with BANano.BN("className") where "className" is a 

literal string, it cannot be a variable. 

 

Example you have this B4J class Person: 

 
Sub Class_Globals 

    Public firstName As String 

    Public lastName As String 

End Sub 

 

'Initializes the object. You can add parameters to this method if needed. 

Public Sub Initialize(first As String, last As String) 

    firstName = first 

    lastName = last 

End Sub 

 

Public Sub fullName() As String 

    Return firstName + " " + lastName 

End Sub 

 

You can now get the Transpiled JavaScript name of this class and create a New instance from it.   

 
dim PersonBANanoClassName as String = BANano.BN("Person") ' will return 

something like "banano_vkpae_person" 

 

Dim P1 As Person = BANano.New(PersonBANanoClassName) 

P1.Initialize("first", "last") 

Log("I'm " & P1.fullName) 

 

This is for demo of the .BN() method only, as normally you would of course just do: 

 
Dim pers as Person 

pers.Initialize("first", "last") 

Log(pers.fullName) 

 

But this can be handy if you want to use some class from e.g. another JavaScript library too.  



 152 BANano – Essentials 

 

21 Quick Reference 
 

21.1 BANano 

 

Events 

• AssetsLoaded (pathsNotFound() As String) 

• CallAjaxResult (Success As Boolean, UniqueID As String, Result As String) 

• CallInlinePHPResult (Success As Boolean, UniqueID As String, Result As String) 

• CronRun() 

• EmailSent (Tag As String, Message As String) 

• IsConnectedResult (Tag As String, Result As Boolean) 

• MessageFromBackgroundWorker (WorkerName As String, Tag As String, 

Value As Object, Error As Object) 

• OffLine() 

• OnLine() 

• ParseEvent (params As Map) 

• Ready() 

• Resized() 

• RouterHandle (url As String, data As Map, params As Map) 

• RouterLeaving As Boolean 

• ScrollSpyEnter (element As BANanoElement) 

• ScrollSpyExit (element As BANanoElement) 

• StopBackgroundWorker() 

• VisibilityChanged (visible As Boolean) 

 

Fields 

• ASSETS_FOLDER As String 

• Header As BANanoHeader 

• HTML_NAME As String 

• IsForBANanoServer As Boolean 

• JAVASCRIPT_NAME As String 

• MANIFEST_NAME As String 

• PHP_NAME As String 

• PHPHost As String 

• SCRIPTS_FOLDER As String 

• SERVICEWORKER_NAME As String 

• ShowDebugEveryLine As Boolean 

• STYLES_FOLDER As String 

• TranspilerOptions As BANanoTranspilerOptions 

• UploadHandlerPath As String 

• Version As String 

• Version735 As String 



 153 BANano – Essentials 

 

• VersionName As String 

 

Functions 

• AddBackgroundWorker (name As String, className As String) 

Adds a Background Worker. Can only be used in AppStart and with Build(). BuildForServer is 

not yet supported! 

 

Name should be unique. 

 

Tip: make the name lowercase so it is easier to process the results back reported in the 

BANano_MessageFromBackgroundWorker event. 

• Alert (text As String) 

Shows an alert box, same as BANano.Msgbox 

• AssetsIsDefined (bundleName As String) As Boolean 

Check if bundle has already been defined 

• AssetsLoad (bundleName As String, assets As List) As BANanoPromise 

Loads a bundle of assets and returns a promise. 

If the asset is a CSS or JS file, it must have been Added with the 

BANano.header.Add...ForLater() methods 
 

' in Sub AppStart() 

BANano.Header.AddCSSFileForLater("mini-nord.min.css") 

... 

 

' in Sub BANano_Ready() 

Dim pathsNotFound() as String 

If BANano.AssetsIsDefined("Loader") = False then 

   Dim prom as BANanoPromise = BANano.AssetsLoad("Loader", 

Array("./assets/1.jpg", "./styles/mini-nord.min.css")) 

   prom.Then(Null) 

     Log("Loader has been loaded!") 

   prom.Else(pathsNotFound) 

     Log("Doh! Loader has not been loaded completely!") 

     For Each path As String In pathsNotFound 

        Log(path) 

     Next 

   prom.End 

End if 

• AssetsLoadEvent (module As Object, bundleAndEventName As String, assets As List) 

Loads a bundle of assets and uses the BANano bundleEventName_AssetsLoaded() event 

 

If the asset is a CSS or JS file, it must have been Added with the 

BANano.header.Add...ForLater() methods 

 

The bundle name and eventName is the same. 
 

' in Sub AppStart() 

BANano.Header.AddCSSFileForLater("mini-nord.min.css") 

... 

 

' in Sub BANano_Ready() 

BANano.AssetsLoadEvent(Me, "Loader", Array("./assets/1.jpg", 

"./styles/mini-nord.min.css")) 

... 

 



 154 BANano – Essentials 

 
Sub loader_AssetsLoaded(pathsNotFound() As String) 

   If BANano.IsNull(pathsNotFound) = False Then 

      Log("Doh! Loader has not been loaded completely!") 

      For Each path As String In pathsNotFound 

         Log(path) 

      Next 

   Else 

      Log("Loader has been loaded!") 

   End If 

End Sub 

• AssetsLoadWait (bundleName As String, assets As List) As Object 

Loads a bundle of assets and waits until it is loaded. Returns a String array containing the 

paths that failed. 

 

If the asset is a CSS or JS file, it must have been Added with the 

BANano.header.Add...ForLater() methods 

 

Note: Do not use a BANano.AWait around this method as it already does it internally and 

needs some other settings before being able to run. 

 
 

' in Sub AppStart() 

BANano.Header.AddCSSFileForLater("mini-nord.min.css") 

... 

 

' in Sub BANano_Ready() 

Dim pathsNotFound() as String 

If BANano.AssetsIsDefined("Loader") = False then 

   pathsNotFound = BANano.AssetsLoadWait("Loader", 

Array("./assets/1.jpg", "./styles/mini-nord.min.css")) 

   If BANano.IsNull(pathsNotFound) = False Then 

      Log("Doh! Loader has not been loaded completely!") 

      For Each path As String In pathsNotFound 

         Log(path) 

      Next 

   Else 

      Log("Loader has been loaded!") 

   End If 

End if 

• AssetsReset 

Reset the dependency trackers 

• Atob (base64String As String) As String 

Decodes a base-64 encoded string 

• Await (promise As Object) As Object 

• B4JCallSubX (Component As Object, Sub As String, Arguments As Object()) As Object 

Similar to CallSub, but with unlimited arguments. Arguments must be passed as an Array. 

 

Can only be used in pure B4J, not in a BANano module! 

• B4JRemoveMeFromCache (cachedPages As Map, pageID As String) 

Removes a page from the BANanoServer cache. See the BANanoServer.b4xlib: 

BANanoServer class. 

• B4JScavengeCache (cachedPages As Map) 

Runs the Cache Scavenger. See the BANanoServer.b4xlib: BANanoCacheScavenger class. 

• B4JUpdateFromCache (me As B4AClass, cachedPages As Map, ws As WebSocket, 

ba As BA) As BANanoCacheReport 

Add or Update a SERVERPage to the BANanoServer cache. 



 155 BANano – Essentials 

 

• BigInt (value As Object) As BANanoObject 

Creates a BigInt (64 bit value). You can only calculate with other BigInt numbers! 

 

Only Applicable for BANano code. 

• BN (B4JName As String) As String 

Returns the full BANano name that will be used in the Transpiled javascript 

 

B4JName MUST be a quoted string: 

 

Will work: 
 

log(BANano.BN("myvar") 

' returns e.g. _banano_mylib_myvar 

 

Will not work: 
 

dim tmp as String = "myvar" 

log(BANano.BN(tmp) 

• BP 

BreakPoint. 

Stops the execution of JavaScript. Is ignored if in release mode. 

Use the Developer Tools in the browser to inspect e.g. variable values 

• Btoa (string As String) As String 

Encodes a string in base-64 

• Build (outputDir As String) 

Should be called in AppStart() in the Main module. 

• BuildAsB4XLib (LibraryVersion As String) 

Should be called in AppStart() in the Main module. 

 

Will Build the transpiled files to your Additional Libraries folder as a B4XLib. 

 

You do not need to compile your Library with the B4J IDE 

• BuildAsB4XlibForABM (ABMStaticFilesFolder As String, LibraryVersion As String) 

Should be called in AppStart() in the Main module. 

 

Will Build the transpiled files to your Additional Libraries folder as a B4XLib for ABMaterial 

(prefix: ABMBanano). 

 

You do not need to compile your Library with the B4J IDE 

 

If ABMStaticFilesFolder (the /www folder) is set, then the assets will be automatically 

unzipped in this folder. 

 

e.g. 
BANano.BuildAsB4XlibForABM("D:\MyProject\MyABMProject\Objects\www"

,"1.15") 

• BuildAsLibrary 

DEPRECIATED: You should use the BuildAsB4XLib instead. 

 

Should be called in AppStart() in the Main module. 

 



 156 BANano – Essentials 

 

Will Build the transpiled files to your Additional Libraries folder. 

 

Do not forget to compile your Library with the B4J IDE: Project - Compile To Library 

to generate the .jar and .xml files. 

• BuildForServer (outputDir As String) 

Should be called in AppStart() in the Main module. 

Builds all the css/html/javascript files from the B4J source code. 

• CallAjax (url As String, type As String, dataType As String, data As Object, 

uniqueId As String, withCredentials As Boolean, headers As Map) 

Makes an ajax call. Returns the result of the call to BANano_CallAjaxResult() 

 

Example: 
dim headers as Map 

headers.initialize 

headers.put("Content-Type", "application/json") 

BANano.CallAjax("https://reqres.in/api/users?page=2","GET","jsonp", 

"","ID0001", false, headers) 

 

Sub BANano_CallAjaxResult(Success As Boolean, UniqueID As String, Result 

As String) 

   Log(Success) 

   Log(UniqueID) 

   Log(Result) 

End Sub 

• CallAjaxWait (url As String, type As String, dataType As String, data As Object, 

withCredentials As Boolean, headers As Map) As Object 

Makes an ajax call. Returns the result of the call 

 

Note: Do not use a BANano.AWait around this method as it already does it internally and 

needs some other settings before being able to run. 

• CallBack (module As Object, methodName As String, params As List) As Object 

Useful where a library you are wrapping needs a function() {} as parameter. 

• CallBackExtra (module As Object, methodName As String, params As List, 

extraParams As List) As Object 

Useful where a library you are wrapping needs a function() {} as parameter. 

 

The params are the 'event' params like in the normal CallBack. 

The extraParams are extra parameters that the callback method takes, not default to the 

callback 

 

Example: 
 

Sub GetFileFromServer(FileName As String) 

   Dim Response As BANanoFetchResponse 

   Dim Blob As BANanoObject 

 

   ' list (GET is default, and we do not need extra options so we pass 

Null for the options) 

   Dim fetch1 As BANanoFetch 

   fetch1.Initialize(FileName, Null) 

   fetch1.Then(Response) 

      ' we got the response promise, so resolve it to a blob 

      fetch1.Return(Response.Blob) 

   fetch1.Then(Blob) 

      ' we got the blob, read it in a FileReader 

      Dim FileReader As BANanoObject 



 157 BANano – Essentials 

 
      FileReader.Initialize2("FileReader", Null) 

      Dim event As BANanoEvent 

      ' the CallBackExtra, which next to the normal event, also we like 

to pass the filename 

      FileReader.SetField("onload", BANano.CallBackExtra(Me, "ReadData", 

Array(event), Array(FileName))) 

      ' get the DataURL 

      FileReader.RunMethod("readAsDataURL", Blob) 

   fetch1.End ' always end a fetch with this! 

End Sub 

 

Sub ReadData(event As BANanoEvent, FileName As String) 'ignore 

   ' get the data 

   Dim Target As BANanoObject = event.OtherField("target") 

   Dim DataUrl As String = Target.GetField("result").Result 

   Log(FileName) 

   log(DataURL) 

End Sub 

• CallBackMethod (module As Object, methodName As String) As Object 

Get the BANano name of a method, to be used in e.g. AddEventListener and 

RemoveEventListener. 

• CallDebugger 

DEPRECIATED: Use BANano.BP instead. 

 

Stops the execution of JavaScript. Is ignored if in release mode. 

Use the Developer Tools in the browser to inspect e.g. variable values * 

• CallInlinePHP (methodName As String, methodParams As Map, uniqueId As String) 

Makes a php call to an inline php method. Returns the result of the call to 

BANano_CallInlinePHPResult() 

 

Example: 
BANano.CallInlinePHP("SayHello", CreateMap("Name": "BANano"), "ID0001") 

 

#if PHP 

   function SayHello($Name) { 

   $ret = Array("answer" => "Hello " .$Name. "!"); 

   echo json_encode($ret); 

} 

#End If 

 

Sub BANano_CallInlinePHPResult(Success As Boolean, UniqueID As String, 

Result As String) 

   Log(Success) 

   Log(UniqueID) 

   Log(Result) 

End Sub 

• CallInlinePHPWait (methodName As String, methodParams As Map) As Object 

Makes a php call to an inline php method. Returns the result of the call. 

 

Note: Do not use a BANano.AWait around this method as it already does it internally and 

needs some other settings before being able to run. 

 

Example: 
Dim res as String = BANano.CallInlinePHPWait("SayHello", 

CreateMap("Name": "BANano")) 

log(res) 

 

#if PHP 

function SayHello($Name) { 



 158 BANano – Essentials 

 
   $ret = Array("answer" => "Hello " .$Name. "!"); 

   echo json_encode($ret); 

} 

#End If 

• CallSub (module As Object, methodName As String, params As List) As Object 

Calls a method from another module/class with unlimited parameters 

• CheckInternetConnection (tag As String) 

Checks if the app can reach the internet 

 

Will raise the banano IsConnected(Tag as String, Result as boolean) event 

 

you can then use the tag to see who was the caller and act accordingly 

• CheckInternetConnectionWait As Boolean 

Checks if the app can reach the internet 

 

Note: Do not use a BANano.AWait around this method as it already does it internally and 

needs some other settings before being able to run. 

• Concat (arr As List, otherArray As List) As Object 

The concat method creates a new array by merging (concatenating) existing arrays. 

The concat method does not change the existing arrays. It always returns a new array. 

• Console As BANanoConsole 

Returns the Console Object as a BANanoConsole. 

• CreateElement (Tag As String) As BANanoElement 

Creates a BANanoElement, not attached to something 

• CreateObjectUrl (object As Object) As BANanoURL 

The URL.createObjectURL() static method creates a DOMString containing a URL 

representing the object given in the parameter. 

The URL lifetime is tied to the document in the window on which it was created. The new 

object URL represents the specified File object or Blob object. 

To release an object URL, call revokeObjectURL(). 

• CronPause (cronName As String) 

Pauses the Cron job previously started with BANano.CronStart 

• CronResume (cronName As String) 

Pauses the Cron job previously paused with BANano.CronPause 

• CronStart (cronName As String, pattern As String, maxRuns As Int) 

Starts a Cron job 

 

cronName: Name of the Cron job. This cannot be a variable and must be a literal String and 

cannot contain spaces or special characters! 

 

Pattern: 

 

S M H D m d 

* * * * * * 

 

S: second (0 - 59) 

M: minute (0 - 59) 

H: hour (0 - 23) 

D: day of month (1 - 31) 

m: month (1 - 12) 



 159 BANano – Essentials 

 

d: day of week (0 - 6), 0 to 6 are Sunday to Saturday; 7 is Sunday, the same as 0 

 

maxRuns: maximum number of runs, 0 = indefinite 

 

Ranges: 

Ranges are two numbers separated with a "-", and they indicate all numbers from one to the 

other. e.g. 10-30 would indicate all numbers between and including 10 to 30. 

 

Interval: 

A interval is a range and a number separated by "/". The range specifies the group of values, 

and number specifies every nth value to take from that range. 

e.g. 0-10/2 would indicate every 2nd number from 0 to 10, therefore [0,2,4,6,8,10] 

 

Will raise the event: cronName_CronRun() in the calling class 

 

Example: 
 

BANano.CronStart("myCron", 15, "0 0 0 * * 2-6") ' at 00:00:00 on every 

weekday run, for a total of 15 times, then stop this Cron 

 

Public Sub MyCron_Run() 

   ' do something 

End Sub 

 

Public Sub btnPause_Click(event as BANanoEvent) 

   BANano.CronPause("myCron") 

End Sub 

 

Public Sub btnResume_Click(event as BANanoEvent) 

   BANano.CronResume("myCron") 

End Sub 

 

Public Sub btnStop_Click(event as BANanoEvent) 

   BANano.CronStop("myCron") 

End Sub 

• CronStop (cronName As String) 

Stops the Cron job previously started with BANano.CronStart 

• DebugTrackLine (moduleName As String, virtualLineNumber As Int) 

DEPRECIATED: Use BANano.BP instead 

 

When running in debug mode, you can get some extra debug information by tracking some 

line. 

In the generated javascript file, some comment lines showing the B4J code have a virtual 

number prefix: [number] 

 

You can use this number to track the transpiling of that line. 

 

Tracks in the B4J log 

• DebugTrackMethod (moduleName As String, methodName As String) 

DEPRECIATED: Use BANano.TM or BANano.TMC instead 

 

Will track this method in the Browsers log 

• DecodeURI (o As Object) As String 

The decodeURI() function is used to decode a URI. 



 160 BANano – Essentials 

 

• DecodeURIComponent (o As Object) As String 

The decodeURIComponent() function decodes a URI component. 

• DeepClone (obj As Object) As Object 

Deep Clones an object (e.g. a map) 

• DeepMerge (obj1 As Object, obj2 As Object) As Object 

Merges two object into one (e.g. two maps into one) 

• DependsOnAsset (AssetFileNameOrURL As String) 

ONLY works for Builds, using b4xlibs, not for .jar libs. 

 

This should NOT be used in AppStart, but is mainly for a library where e.g. for a Custom 

View. 

Should be placed in the Initialize method. 

 

Assets defined with header.AddCSSFile, header.AddJavascriptFile or other assets (images, 

fonts) are ONLY loaded 

if the class where the DependsOnAsset is defined, is actually used in the final app. 

 

NOTE: AssetFileNameOrUrl MUST be a String, NOT a variable! (case sensitive) 

• EmptyLocalStorage 

Empty the LocalStorage for this domain 

• EmptyLocalStorage2 

Native Empty JavaScript the LocalStorage for this domain 

• EmptySessionStorage (key As String) 

Empty the SessionStorage for this domain 

• EmptySessionStorage2 (key As String) 

Native Empty JavaScript the SessionStorage for this domain 

• EncodeURI (o As Object) As String 

The encodeURI() function is used to encode a URI. 

• EncodeURIComponent (o As Object) As String 

The encodeURIComponent() function encodes a URI component. 

• Eval (o As Object) As Object 

The eval() function evaluates or executes an argument. 

 

If the argument is an expression, eval() evaluates the expression. If the argument is one or 

more JavaScript statements, eval() executes the statements. 

• Every (arr As List, callbackMethod As String) As Object 

Every method checks if all array values pass a test. 

 

callbackMethod should look as: Sub MyCallback(value as Object, index as int, array as List) 

• Exists (target As String) As Boolean 

Checks if an element(s) exists 

 

Target: and ID (use #), class (use ."), tag etc... 

• Existy (var As Object) As Boolean 

Test if the object is existy (not null or undefined) 

• ExternalHTMLToHTMLBlocks (name As String, fullPath As String) 

Can only be used in AppStart() 

 

Will extract all html blocks where the tag has the class BANANO 



 161 BANano – Essentials 

 

 

if the class = BANANO, then the body HTML String will not contain these elements. 

you can later get their HTML by using the GetHTMLBlock() method. 

 

the Body HTML can be returned with the GetHTMLBody() method. 

• Filter (arr As List, callbackMethod As String) As Object 

The filter method creates a new array with array elements that passes a test. 

 

callbackMethod should look as: Sub MyCallback(value as Object, index as int, array as List) 

• Finally 

A try catch in B4J does not have a Finally statement. 

 

e.g. 
Dim num As Int = 10 

Dim divider As Int = 0 

Try 

   If divider = 0 Then 

      BANano.Throw("You can not divide by 0!") 

   Else 

      Log(num/divider) 

   End If 

Catch 

   Log(LastException) 

   ' will still do the Finally part, but not the "After the Try" log. 

   Return 

BANano.Finally 'ignore 

   Log("Always doing this") 

End Try 

 
Log("After the Try") 

• Find (arr As List, callbackMethod As String) As Object 

The find method returns the value of the first array element that passes a test function. 

 

callbackMethod should look as: Sub MyCallback(value as Object, index as int, items as List) 

• FindIndex (arr As List, callbackMethod As String) As Int 

The findIndex method returns the index of the first array element that passes a test function. 

 

callbackMethod should look as: Sub MyCallback(value as Object, index as int, items as List) 

• ForEach (arr As List, callbackMethod As String) 

The forEach method calls a function (a callback function) once for each array element. 

 

callbackMethod should look as: Sub MyCallback(value as Object, index as int, array as List) 

• FromBase64 (s As String) As String 

Converts a base 64 string back to a normal string 

• FromBinary (binaryStr As String) As String 

Reverse conversion from ToBinary 

• FromJson (object As Object) As Object 

Shortcut function to make an object of JSON 

• GenerateUniqueID As Object 

Generate a unique ID (64-bit long). This id is sortable in time (bigger = later) 

 

Can be used both in B4J as in BANano code. 

 



 162 BANano – Essentials 

 

Note: The BANano version returns a BigInt. You can only calculate with other BigInt 

numbers! 

 
Dim big64 as Long = BANano.BigInt(0) 

log(big64) 

Dim big64 as BANanoObject = BANano.BigInt(0) 

log(big64.ToString(10)) 

• GenerateUUID As String 

Generates a UUID. Works both in B4J as in BANano code 

• GeoLocation As BANanoGeoLocation 

Returns the Navigator GeoLocation Object as a BANanoGeoLocation. 

• GetAllViewsFromLayoutArray (module As Object, layoutName As String, 

unqiueIndex As Long) As Map 

Returns a map with all the custom views that are in the layout, with unique index 

 

The unique index was returned by the LoadLayoutArray() method. 

 

All keys in the map are lowercased! 

• GetAsset (url As String) As Object 

returns the object previously loaded with AssetsLoad/AssetsLoadEvent/AssetsLoadWait 

 

needs the exact url path used in the Load methods. 

• GetCacheStorage2 (url As String) As String 

Native returns the full url (with parameters) if the url is in the cacheStorage RUNTIME 

The url will be searched without parameters. 

 

URL must be a valid http or https! 

 

e.g. 

 
BANano.GetCacheStorage2("https://mydomain.com/image.png") 

 

will return: "https://mydomain.com/image.png?param=Alain" 

• GetCookie (name As String) As String 

Returns the value of the cookie 

• GetCurrentUrl As String 

Returns the full URL of the current page 

• GetElement (target As String) As BANanoElement 

Target: and ID (use #), class (use ."), tag etc... 

• GetElements (target As String) As BANanoElement() 

Target: and ID (use #), class (use ."), tag etc... 

• GetFileAsArrayBuffer (fileURL As String, 

options As BANanoFetchOptions) As BANanoPromise 

Does a Fetch with a resource (e.g. url) and an optional Request options object 

Pass null if no request options need to be set 

 

Returns a promise holding the ArrayBuffer 

• GetFileAsDataURL (fileURL As String, 

options As BANanoFetchOptions) As BANanoPromise 

Does a Fetch with a resource (e.g. url) and an optional Request options object 



 163 BANano – Essentials 

 

Pass null if no request options need to be set 

 

Returns a promise holding the DataURL 
 

Dim dataUrl As String 

Dim dataUrlProm As BANanoPromise = 

BANano.GetFileAsDataURL("./assets/B4X.jpg", Null) 

dataUrlProm.Then(dataUrl) 

   Log(dataUrl) 

dataUrlProm.end 

• GetFileAsJSON (fileURL As String, options As BANanoFetchOptions) As BANanoPromise 

Does a Fetch with a resource (e.g. url) and an optional Request options object 

Pass null if no request options need to be set 

 

Returns a promise holding the JSON 

• GetFileAsText (fileURL As String, options As BANanoFetchOptions, 

encoding As String) As BANanoPromise 

Does a Fetch with a resource (e.g. url) and an optional Request options object 

Pass null if no request options need to be set 

 

Returns a promise holding the text 

• GetFirebaseToken As String 

Get the Firebase Messaging token after the user gave permission 

• GetGeoPosition (options As Object) As BANanoPromise 

Shortcut method to get the users current BANanoGeoPosition 

 

options: {"enableHighAccuracy": true, "timeout": 5000, maximmumAge: 0} 

Use Null for defaults: false, Infinity, 0 

 

Usage: 
 

Dim POS as BANanoGeoPosition = 

BANano.Await(BANano.GetGeoPosition(CreateMap("enableHighAccuracy": true, 

"timeout": 5000, "maximumAge": 0)) 

• GetHTMLBlock (name As String, origId As String, idPostFix As String) As String 

Returns the HTML String from a removed HTML Block (using the BANANO class) 

previously added with the ExternalHTMLToHTMLBlocks() method. 

 

The idPostFix will be added to the original Id as _idPostFix. Is normally a number. 

• getHTMLBody (name As String) As String 

returns the HTML String with all HTML Blocks having the BANano class removed. 

• GetLocalStorage (key As String) As Object 

Returns the saved json from the key in the LocalStorage 

• GetLocalStorage2 (key As String) As Object 

Native Get JavaScript LocalStorage 

• GetP (Class As Object, propName As String) As Object 

Method to get a property from any class 

• GetPageHTML (B4JClassName As String) As String 

BANanoServer only. Returns the generated page HTML in Release Mode where /Files folder 

does not exist. 

• GetPageID As String 

In case you are connected to a BANanoServer, you can here retrieve the Page ID. 



 164 BANano – Essentials 

 

This Page ID can then be used in the request to a B4J handler class to identify where the 

class came from. * 

• GetSessionStorage (key As String) As Object 

Returns the saved json from the key in the SessionStorage 

• GetSessionStorage2 (key As String) As Object 

Native Get JavaScript SessionStorage 

• GetSuffixFromID (id As String) As Long 

Extracts the last number from an id 

 

e.g. if the id = mybutton_1 then 1 is returned 

• GetType (var As Object) As Object 

Will be depreciated in the future. Use the normal B4J GetType() instead! 

 

to get the type of the object (same as BANano.TypeOf) 

• GetURLParamDefault (url As String, key As String, Default As Object) As Object 

Gets all the URL parameter. If it does not exist it returns the passed default value. 

• GetURLParams (url As String) As Map 

Gets all the URL parameters as a map. 

• GetViewFromLayout (module As Object, id As String) As Object 

Returns the Custom view from a layout loaded with LoadLayout 

• GetViewFromLayoutArray (module As Object, layoutName As String, id As String, 

uniqueIndex As Long) As Object 

Returns the Custom view from a layout loaded with LoadLayoutArray, with unique index 

 

The unique index was returned by the LoadLayoutArray() method. 

• GZipGeneratedWebsite (minSizeKB As Double) 

DEPRECIATED: Use BANano.TranspilerOptions.GZipGeneratedWebsite instead 

 

Will GZip your html/css/js/json files on compilation. Set a minimum filesize so small files are 

not compressed 

 

This is ONLY useful if you use NGinx with gzip_static set to 'on' 

• History As BANanoHistory 

Returns the History Object as a BANanoHistory. 

• IIf (condition As Object, returnTrue As Object, returnFalse As Object) As Object 

Shortcut method to do an 'if then else' 

DEPRECIATED: Use the build-in B4J IIf instead. 

 

e.g. 
 

mRoot = BANano.IIf(Root = "/", "/", "/" & TrimSlashes(Root) & "/") 

• Import (moduleName As String) As BANanoPromise 

• ImportRaw (importStatement As String) 

Literaly takes over the importStatement 

 

e.g. BANano.ImportRaw("import { export1 , export2 as alias2} from 'module-name'") 

• ImportWait (moduleName As String) As BANanoObject 



 165 BANano – Essentials 

 

• IndexOf (arr As List, searchValue As Object) As Int 

The indexOf method searches an array for an element value and returns its position. 

Note: The first item has position 0, the second item has position 1, and so on. 

• IndexOf2 (arr As List, searchValue As Object, start As Int) As Int 

The indexOf2 method searches an array for an element value and returns its position. 

Note: The first item has position 0, the second item has position 1, and so on. 

 

start: Where to start the search. Negative values will start at the given position counting 

from the end, and search to the end. 

• INFINITY As Object 

transpiles as 'Infinity' 

• Initialize (eventName As String, appShortName As String, appVersion As Long) 

Do not uses spaces in the appShortName! 

• Initialize2 (eventName As String, appShortName As String, appVersion As Long, 

B4JAdditionalLibrariesPath As String) 

Do not uses spaces in the appShortName! 

• IsArray (var As Object) As Boolean 

Test if the object is an array 

• IsBoolean (var As Object) As Boolean 

Test if the object is a boolean 

• IsCapitalized (var As String) As Boolean 

Test if the string is capitalized 

• IsClass (var As Object, className As String) As Boolean 

Test if the given value is a certain B4J class 

className must be a String, not a variable. 

 

e.g. BANano.IsClass(myObj, "MyB4JClassName") 

• IsDate (var As Object) As Boolean 

Test if the object is a date 

• IsDecimal (var As Object) As Boolean 

Test if the given value is decimal 

• IsDomNode (var As Object) As Boolean 

Test if the object is a DOM Node 

• IsEmpty (var As Object) As Boolean 

Test if the object is an empty 

• IsError (var As Object) As Boolean 

Test if the object is an error 

• IsFinite (o As Object) As Boolean 

The isFinite() function determines whether a number is a finite, legal number. 

• IsFunction (var As Object) As Boolean 

Test if the object is a function 

• IsInteger (var As Object) As Boolean 

Test if the given value is integer 

• IsJson (var As Object) As Boolean 

Test if the object is a Json object 

• IsList (var As Object) As Boolean 

Test if the object is a List 



 166 BANano – Essentials 

 

• IsMap (var As Object) As Boolean 

Test if the object is a Map 

• IsNaN (o As Object) As Boolean 

The isNaN() function determines whether a value is an illegal number (Not-a-Number). 

• IsNull (var As Object) As Boolean 

Test if the object is null 

• IsNumber (var As Object) As Boolean 

Test if the object is a number 

• IsObject (var As Object) As Boolean 

Test if the object is an object 

• IsPhone As Boolean 

Returns if the browser is running on a phone 

• IsString (var As Object) As Boolean 

Test if the object is a string 

• IsTablet As Boolean 

Returns if the browser is running on a tablet 

• IsUndefined (var As Object) As Boolean 

Test if the object is undefined 

• Join (listOfStrings As List, delimiter As String) As String 

Makes a new string from the list where all items are seperated by the delimiter 

• LastIndexOf (arr As List, searchValue As Object) As Int 

lastIndexOf is the same as indexOf, but returns the position of the last occurrence of the 

specified element. 

Note: The first item has position 0, the second item has position 1, and so on. 

• LastIndexOf2 (arr As List, searchValue As Object, start As Int) As Int 

lastIndexOf2 is the same as indexOf2, but returns the position of the last occurrence of the 

specified element. 

Note: The first item has position 0, the second item has position 1, and so on. 

 

start: Where to start the search. Negative values will start at the given position counting 

from the end, and search to the beginning. 

• LoadLayout (target As String, layoutName As String) 

Loads a .bjl layout (using ONLY BANano Custom views). 

 

You add/set BANano Custom Views in the Abstract Designer (Add View -> Custom view). 

Only these properties apply: 

Name = HTML ID 

EventName: 

+ All CustomView Properties 

 

Note: As B4J custom components currently can't set the Parent property except to main, an 

own algorithm tries to determine it. 

 

layoutName must be a string. It cannot be a variable. 

• LoadLayoutAppend (target As String, layoutName As String) 

Loads a .bjl layout (using ONLY BANano Custom views). Does not empty the Target first. 

 

You add/set BANano Custom Views in the Abstract Designer (Add View -> Custom view). 

Only these properties apply: 



 167 BANano – Essentials 

 

Name = HTML ID 

EventName: 

+ All CustomView Properties 

 

Note: As B4J custom components currently can't set the Parent property except to main, an 

own algorithm tries to determine it. 

 

layoutName must be a string. It cannot be a variable. 

• LoadLayoutArray (target As String, layoutName As String, 

emptyTargetFirst As Boolean) As Long 

Loads a .bjl layout (using ONLY BANano Custom views) as an array. You can NOT Dim one 

of the views in such a layout in Globals! 

 

You add/set BANano Custom Views in the Abstract Designer (Add View -> Custom view). 

Only these properties apply: 

Name = HTML ID 

EventName: 

+ All CustomView Properties 

 

Note: As B4J custom components currently can't set the Parent property except to main, an 

own algorithm tries to determine it. 

 

layoutName must be a string. It cannot be a variable. 

 

Return: will return a unique number that has been added as suffix to every view in the 

layout. 

• Location As BANanoLocation 

Returns the Location Object as a BANanoLoation. 

• Map (arr As List, callbackMethod As String) As Object 

The map method creates a new array by performing a function on each array element. 

The map method does not execute the function for array elements without values. 

The map method does not change the original array 

 

callbackMethod should look as: Sub MyCallback(value as Object, index as int, array as List) 

• MethodVarsToMap (includeSubName As Boolean) As Map 

Creates a Map of all the parameters past in the current method. 

If includeSubName = true, then the subs name is added with key "subname" 

• Msgbox (text As String) 

Shows an alert box, same as BANano.Alert 

• NAN As Object 

transpiles as 'NaN' (Not-a-Number) 

• Navigator As BANanoNavigator 

Returns the Navigator Object as a BANanoNavigator. 

• New (B4JClassName As String) As Object 

Creates a new instance of a B4J Class, based on its name 

 

e.g. 
 

Dim P1 As Page1 = BANano.New("Page1") 

Log("I'm " & P1.Name) 



 168 BANano – Essentials 

 

 

Page1 class: 
 

Sub Class_Globals 

Public Name As String = "Page 1" 

End Sub 

 

'Initializes the object. You can add parameters to this method if needed. 

Public Sub Initialize 

 

End Sub 

 

Note: if you want to use a variable for "Page1" in BANano.New() 

make sure you use BANano.BN() when you SET the variable! 

 

see BANano.BN() for more info. 

 

e.g. 
 

dim myClass as String = BANano.BN("Page1") 

 

'later in the code you can then use: 

Dim P1 As Page1 = BANano.New(myClass) 

Log("I'm " & P1.Name) 

• ObjectToNumber (object As Object) As Int 

The + operator used as a unary operator, converts its operand to a number 

• OLDBROWSER As Boolean 

Is a TRANSPILER CONTROL WORD to write code depending on the browser. 

Older browsers which cannot use ES6 keywords like Wait methods can have an alternative 

this way. 

 

MUST be used like this and the if can NOT contain additional conditions! 

Do NOT put this value in a variable. 

 

e.g. If BANano.OLDBROWSER Then 
' code for old browsers 

Else 

' code for new browsers 

End If 

• parseFloat (o As Object) As Double 

The parseFloat() function parses a string and returns a floating point number. 

• parseInt (o As Object) As Int 

The parseInt() function parses a string and returns an integer. 

• PHPAddHeader (header As String) 

Add a header in the generated php file 

 

e.g. 
 

BANano.PHPAddHeader("Access-Control-Allow-Origin: *") 

• PingServer (host As String, port As Int, timeoutMs As Int) As Boolean 

Pings a host to check if it is reachable. 

• Pop (arr As List) As Object 

The pop method removes the last element from an array. 

The pop method returns the value that was "popped out". 



 169 BANano – Essentials 

 

• PromiseAll (promises As List) As BANanoPromise 

Returns a single Promise that resolves when all of the promises passed as a list have 

resolved or when the list contains no promises. 

It rejects with the reason of the first promise that rejects. There is no implied ordering in the 

execution of the array of Promises given. 

On some computers, they may be executed in parallel, or in some sense concurrently, while 

on others they may be executed serially. 

 

For this reason, there must be no dependency in any Promise on the order of execution of 

the Promises 

• PromiseAllSettled (promises As List) As BANanoPromise 

Returns a promise that resolves after all of the given promises have either resolved or 

rejected, with an array of objects that each describes the outcome of each promise. 

 

NOT supported in old browsers yet! 

• PromiseAny (promises As List) As BANanoPromise 

as soon as one of the promises in the iterable fulfils, returns a single promise that resolves 

with the value from that promise. 

If no promises in the iterable fulfil (if all of the given promises are rejected), then the 

returned promise is rejected. 

 

Essentially, this method is the opposite of PromiseAll(). 

• PromiseRace (promises As List) As BANanoPromise 

Returns a promise that fulfils or rejects as soon as one of the promises in the list fulfils or 

rejects, with the value or reason from that promise. 

• Push (arr As List, newObj As Object) As Int 

The push method adds a new element to an array (at the end). 

The push method returns the new array length. 

• RaiseEventToABM (eventName As String, eventParamNames As List, 

eventParamValues As List, Description As String) 

Method to raise an event to an ABM, maximum two params because B4J only supports this 

maximum. Use a Map is more are needed. 

 

The Description will be added to the generated .bas file for ABM as comment. 

• Reduce (arr As List, callbackMethod As String) As Object 

The reduce method runs a function on each array element to produce (reduce it to) a single 

value. 

The reduce method works from left-to-right in the array. See also reduceRight. 

The reduce method does not reduce the original array 

 

callbackMethod should look as: Sub MyCallback(total as int, value as Object, index as int, 

array as List) 

 

The total = the initial value / previously returned value 

• ReduceRight (arr As List, callbackMethod As String) As Object 

The reduceRight method runs a function on each array element to produce (reduce it to) a 

single value. 

The reduceRight works from right-to-left in the array. See also reduce. 

The reduceRight method does not reduce the original array. 



 170 BANano – Essentials 

 

 

callbackMethod should look as: Sub MyCallback(total as int, value as Object, index as int, 

array as List) 

 

The total = the initial value / previously returned value 

• RemoveCacheStorage2 (url As String) 

Native deletes a key from the cacheStorage RUNTIME. 

The url will be searched without parameters. 

 

URL must be a valid http or https! 

 

e.g. 

 

BANano.RemoveCacheStorage2("https://mydomain.com/image.png") 

• RemoveCookie (name As String, jsonOptions As String) 

Deletes a cookie. 

 

IMPORTANT! When deleting a cookie and you're not relying on the default attributes, 

you must pass the exact same path and domain attributes that were used to set the cookie 

 

example: 

 
RemoveCookie("mycookie", "{path: '', domain: 'mydomain.com'}") 

• RemoveLocalStorage (key As String) 

Deletes the key from the LocalStorage 

• RemoveLocalStorage2 (key As String) 

Native Deletes JavaScript the key from the LocalStorage 

• RemoveSessionStorage (key As String) 

Deletes the key from the SessionStorage 

• RemoveSessionStorage2 (key As String) 

Native Deletes JavaScript the key from the SessionStorage 

• ReplaceRegEx (s As String, regEx As String, replacement As String) As String 

The ReplaceRegEx() method returns a new string with some or all matches of a pattern 

replaced by a replacement 

• Resolve (returnPromise As Object) 

This method is called in a ...Wait() method with the signature funcNameWAIT(Resolve as 

Object) 

see also BANano.WaitFor() 

• ReturnElse (returnPromise As Object) As Object 

This method is called in a function that is run by promise.CallSub() 

It returns the value of the returnValue in promise.Else(returnValue) 

 

Use Null is no returnValue is passed 

 

Is the Reject() method in javascript 

• ReturnThen (returnPromise As Object) As Object 

This method is called in a function that is run by promise.CallSub() 

It returns the value of the returnValue in promise.Then(returnValue) 

 



 171 BANano – Essentials 

 

Use Null is no returnValue is passed 

 

Is the Resolve() method in javascript 

• Reverse (arr As List) 

The reverse method reverses the elements in an array. 

You can use it to sort an array in descending order. 

• RevokeObjectURL (url As BANanoURL) 

The URL.revokeObjectURL() static method releases an existing object URL which was 

previously created by calling URL.createObjectURL(). 

Call this method when you've finished using an object URL to let the browser know not to 

keep the reference to the file any longer. 

• RunBackgroundWorkerMethod (name As String, tag As String, methodName As String, 

params As List) 

Runs a method on the instance (name) of the Background Worker previously added with 

AddBackGroundWorker. 

 

The Result will be returned to the main thread in the calling Class via the 

BANano_MessageFromBackgroundWorker event. 

• RunInlineJavascriptMethod (methodName As String, Params As List) As Object 

Will be depreciated. Use RunJavascriptMethod() instead. 

• RunJavascriptMethod (methodName As String, Params As List) As Object 

Method to call a Javascript method. The methodName is Case Sensitive! 

 

For inline javascript, use #If JAVASCRIPT and #End If 

Note: it does not matter where you put inline javascript, all of it is global. 

 

Example: * 
Log(BANano.RunInlineJavascriptMethod("evaluate", Array As String("10 * 

20"))) 

 

#if JAVASCRIPT 

function evaluate(s) { 

   // so we get back a string 

   return '' + eval(s); 

} 

#End If 

• RunThenCatchJavascriptMethod (methodName As String, Params As List, 

thenCallBack As Object, catchCallBack As Object) 

Method to call a Javascript method with then/catch callbacks. The methodName is Case 

Sensitive! 

 

Use BANano.CallBack to build the callbacks or pass null if not used 

• Screen As BANanoScreen 

Returns the Screen Object as a BANanoScreen. 

• ScrollSpy (selector As String, offset As Double, runOnce As Boolean) 

selector: ID (use #), class (use ."), tag etc... 

offset: A value from 0 to 1 of how far from the bottom of the viewport to offset the trigger 

by. 

0 = top of element crosses bottom of viewport (enters screen from bottom) 

1 = top of element crosses top of viewport (exits screen top). 

runOnce: Whether or not to trigger the callback just once. 



 172 BANano – Essentials 

 

 

Events: 
BANano_ScrollSpyEnter(element As BANanoElement) 

BANano_ScrollSpyExit(element As BANanoElement) 

• SendEmail (token As String, tag As String, from As String, to As String, subject As String, 

body As String) 

Sends a simple email 

 

Use https://www.smtpjs.com/ to encrypt your credentials and generate the token. 

 

It will raise the _EmailSent() event, returning the tag and a message. Can be OK or an error 

message. 

• SendFromBackgroundWorker (tag As String, value As Object, error As Object) 

Directly send something from a Background Worker class to the main Thread via the 

BANano_MessageFromBackgroundWorker event. 

• SetCacheStorage2 (url As String) 

Native to set url with parameters into the cacheStorage RUNTIME. 

 

URL must be a valid http or https! 

 

e.g. 

 
BANano.SetCacheStorage2("https://mydomain.com/image.png?param=Alain") 

• SetCookie (name As String, value As String, jsonOptions As String) 

jsonOptions: expires, path, domain, secure 

 

example: expires 7 days from now 

 
SetCookie("mycookie", "myvalue", "{expires: 7, path: '', domain: 

'mydomain.com', secure: 'true'}") 

• SetLocalStorage (key As String, json As Object) 

To set data into localStorage, you must use the SetLocalStorage API. There are two 

arguments: 

key for the Object's key, and json for the key value 

 

example: 
 

dim json as JSONGenerator 

json.initialize("{ founded: '1992', formed: 'California', members: ['Tom 

Delonge', 'Mark Hoppus', 'Travis Barker']}") 

SetLocalStorage("someband", json) 

• SetLocalStorage2 (key As String, value As Object) 

Native Set JavaScript LocalStorage 

• SetMeToNull 

This would be the same as typing Me = Null in B4J, but this is not possible in the IDE 

• SetP (Class As Object, propName As String, value As Object) 

Method to set a property from any class 

• SetSessionStorage (key As String, json As Object) 

To set data into sessionStorage, you must use the SetSessionStorage API. There are two 

arguments: 

key for the Object's key, and json for the key value 

 



 173 BANano – Essentials 

 

example: 
 

dim json as JSONGenerator 

json.initialize("{ founded: '1992', formed: 'California', members: ['Tom 

Delonge', 'Mark Hoppus', 'Travis Barker']}") 

SetSessionStorage("someband", json) 

• SetSessionStorage2 (key As String, value As Object) 

Native Set JavaScript SessionStorage 

• SetTabNotification (Number As Int) 

Adds a notification number to the browsers tab. e.g. '(2) My Website' 

• SF (smartFormattedText As String) As String 

Returns the html conversion of a string using Smart Formatting tags. 

 

Smart formatting Tags: 

 

{B}{/B}: Bold 

{I}{/I}: Italic 

{U}{/U}: Underline 

{SUB}{/SUB}: Subscript 

{SUP}{/SUP}: Superscript 

{BR}: Line break 

{WBR}: Word break opportunity 

{NBSP}: Non-breakable space 

{AL}http://...{AT}text{/AL}: Link, opening a new tab 

{AS}http://...{AT}text{/AS}: Link, not opening a new tab 

{C:#RRGGBB}{/C}: Color 

{ST:styles}{/ST}: Add specific styles e.g. {ST:font-size:0.9rem;color:#2B485C}My text in font-

size 0.9rem{/ST} 

{IC:#RRGGBB}{/IC}: Icons (if the correct .css or font is loaded) e.g. {IC:#FFFFFF}fa fa-

refresh{/IC} 

• Shift (arr As List) As Object 

The shift method removes the first array element and "shifts" all other elements to a lower 

index. 

The shift method returns the string that was "shifted out". 

• Sleep (milliseconds As Int) 

Can only be used in a ...Wait() method. 

• Slice (arr As List, start As Int) As Object 

The slice method slices out a piece of an array into a new array from the start until the end. 

The slice method creates a new array. It does not remove any elements from the source 

array. 

It is like the B4J SubString for arrays. 

• Slice2 (arr As List, start As Int, endNotIncluded As Int) As Object 

The slice2 method slices out a piece of an array into a new array. 

The slice3 method creates a new array. It does not remove any elements from the source 

array. 

It is like the B4J SubString2 for arrays. 

• Some (arr As List, callbackMethod As String) As Object 

Some method checks if some array values pass a test. 

 

callbackMethod should look as: Sub MyCallback(value as Object, index as int, array as List) 



 174 BANano – Essentials 

 

• Sort (arr As List) 

The sort method sorts an array alphabetically 

• Sort2 (arr As List, callbackMethod As String) 

By default, the sort function sorts values as strings. 

You can fix this by providing a compare function. 

The compare function should return a negative, zero, or positive value, depending on the 

arguments. 

 

callbackMethod should look as: Sub MyCompare(a as object, b as object) as int 

 

If the result is negative a is sorted before b. 

If the result is positive b is sorted before a. 

If the result is 0 no changes are done with the sort order of the two values. 

• Splice (arr As List, start As Int, length As Int, newObjs As List) As Object 

The splice method can be used to add new items to an array. 

The second parameter defines the position where new elements should be added (spliced in). 

The third parameter defines how many elements should be removed. 

The fourth parameter is an array of new elements to be added. 

The splice method returns an array with the deleted items. 

• Split (pattern As String, text As String) As String() 

Same a B4Js Regex.Split() 

• Spread (variable As Object) As Object 

Adds the spread operator (three dots) before the variable. 

 

e.g. BANano.Spread(myVar) 

 

becomes: ...myVar 

• StartBackgroundWorker (name As String, params As List) 

Start a previously added with AddBackgroundWorker worker. (Runs the Initialize method 

with its parameters) 

• StaticFolder As String 

Gets the static folder name. Is the appShortVersion if not set by 

BANano.TranspilerOptions.SetStaticFolder. 

 

Can be called from within a BANano script. 

• StopBackgroundWorker (name As String, params As List) 

Stops a previously added with AddBackgroundWorker worker. (Runs the 

BANano_StopBackgroundWorker method with its parameters) 

• SubExists (module As Object, methodName As String) As Boolean 

Will be depreciated in the future. Use the normal B4J SubExists instead! 

 

Checks if a method exists in a module. 

 

Note: for CallBacks, Events or CallSub, this is already done automatically 

• Throw (error As Object) 

The throw statement allows you to create a custom error. 

 

Technically you can throw an exception (throw an error). 

 



 175 BANano – Essentials 

 

e.g. BANano.Throw("This number is not valid") 

BANano.Throw(500) 

• TM 

Is ignored in Release mode. 

 

Track Method. Use it in a Sub to trace some info after it ran in the browsers log. 

• TMC 

Is ignored in Release mode. 

 

Same as TM (TrackMethod), but initially collapsed 

• ToBase64 (s As String) As String 

Converts a string to a base 64 string. 

• ToBinary (str As String) As String 

Convert a Unicode string to a string in which each 16-bit unit occupies only one byte 

• ToElement (obj As BANanoObject) As BANanoElement 

Converts the BANanoObject to a BANAnoElement 

• ToJson (object As Object) As Object 

Shortcut function to make JSON of an object 

• ToObject (elem As BANanoElement) As BANanoObject 

Converts the BANanoElement to a BANanoObject 

• ToString (o As Object) As String 

The ToString() function converts the value of an object to a string. 

 

Note: The ToString() function returns the same value as toString() of the individual objects. 

• TypeOf (var As Object) As Object 

Will be depreciated in the future. Use the normal B4J GetType() instead! 

 

to get the type of the object (same as BANano.GetType) 

• UNDEFINED As Object 

transpiles as 'undefined' (without quotes) 

• UnregisterServiceWorkers 

      Unregisters all service workers previously registered by the WebApp 

• Unshift (arr As List, newObj As Object) As Int 

The unshift method adds a new element to an array (at the beginning), and "unshifts" older 

elements. 

The unshift method returns the new array length. 

• UploadFile (file As Object) As BANanoPromise 

Uploads a File object to the BANanoServer UploadHandler 

the following request properties are added: 

 

pageId - the unique page id 

fileName - the file name 

 

This calls a POST using the Fetch API 

• UrlBase64ToUint8Array (base64String As String) As Int() 

Converts a Base64 String to an unsigned int array 

• WaitFor (result As Object, module As Object, methodName As String, params As List) 

DEPRECIATED: using the normal BANano.Await() wrapper with promises is easier to use. 

 



 176 BANano – Essentials 

 

Waits for the methodName to be resolved 

This method MUST have this signature (name must end with 'Wait' and param name must 

be Resolve as Object!): 

 

e.g. methodNameWAIT(Resolve as Object, otherParam as int, ...) 

 

Note: Do not use a BANano.AWait around this method as it already does it internally and 

needs some other settings before being able to run. 

• Window As BANanoWindow 

Returns the Window Object as a BANanoWindow. 

 

Properties 

• BROWSERPrefix As String [write only] 

Internally used by the BANanoServer lib 

• ExternalTestConnectionServer As String [write only] 

DEPRECIATED: Use BANano.TranspilerOptions.ExternalTestConnectionServer instead 

 

By default the connection to the internet is tested by checking if donotdelete.gif can be 

retrieved 

from the assets folder where the app is hosted. 

 

However, if you do not put it on a host (e.g. just by opening the .html file from disk), 

You can upload the donotdelete.gif to some host on the internet to test for an internet 

connection. 

• Initialbody As String [write only] 

Can ONLY be used in AppStart(). It writes the string directly as the innerHTML of the body 

tag. 

• MinifyOnline As Boolean [write only] 

DEPRECIATED: Use BANano.TranspilerOptions.MinifyOnline instead 

 

Using the API of: 

 

https://javascript-minifier.com, the generated Javascript file will be minified 

https://cssminifier.com, the CSS files will be minified 

• SHAREDPrefix As String [write only] 

Internally used by the BANanoServer lib 

• UseServiceWorker As Boolean [write only] 

DEPRECIATED: Use BANano.TranspilerOptions.UseServiceWorker instead 

 

Can ONLY be used in AppStart(). Set this param to false if you do not want to use a 

ServiceWorker 

Default true 

  



 177 BANano – Essentials 

 

21.2 BANanoCacheReport 

 

Properties 

• BANPageID As String [read only] 

Returns the current unique page ID 

 

Only useful with a B4J server, using the BANano.B4JUpdateFromCache() method 

• BANSessionID As String [read only] 

Returns the current session ID 

 

Only useful with a B4J server, using the BANano.B4JUpdateFromCache() method 

• ComesFromCache As Boolean [read only] 

Returns if BANano could recover the B4J class from its cache 

 

Only useful with a B4J server, using the BANano.B4JUpdateFromCache() method 

• IsReconnected As Boolean [read only] 

Returns if the WebSocket was reconnected 

 

Only useful with a B4J server, using the BANano.B4JUpdateFromCache() method 

  



 178 BANano – Essentials 

 

21.3 BANanoConsole 

 

Functions 

• Assert (expression As Object, message As Object) 

Write a message to the console, only if the first argument is false: 

• Clear 

Clear all messages in the console 

• Count 

Writes to the console the number of times that particular Count() is called. 

• Error (message As Object) 

This method writes an error message to the console. 

• GetField (field As String) As BANanoObject 

Gets a field value 

• Group (label As Object) 

Creates a new inline group in the console. These indents following console messages by an 

additional level, until console.groupEnd() is called 

• GroupCollapsed (label As Object) 

Creates a new inline group in the console. However, the new group is created collapsed. The 

user will need to use the disclosure button to expand it 

• GroupEnd 

Exits the current inline group in the console 

• Info (message As Object) 

This method writes an info message to the console. 

• Log (message As Object) 

This method writes a message to the console. 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

• Table (tableData As Object, tablecolumns As Object) 

The console.table() method writes a table in the console view. 

• Time (label As String) 

Starts a timer in the console view. 



 179 BANano – Essentials 

 

• TimeEnd (label As String) 

Ends a timer, and writes the result in the console view. 

• Trace 

Outputs a stack trace to the console 

• Warn (message As Object) 

This method writes an warning message to the console. 

  



 180 BANano – Essentials 

 

21.4 BANanoElement 

 

Functions 

• AddClass (Class As String) As BANanoElement 

Add html class(es) to all of the matched elements 

• AddEventListener (eventName As String, callbackMethod As Object, 

useCapture As Boolean) 

eventName: A String that specifies the name of the event. (Do not use the 'on' prefix!) 

callbackMethod: Specifies the function to run when the event occurs. Use 

BANano.CallBackMethod() 

useCapture: A Boolean value that specifies whether the event should be executed in the 

capturing or in the bubbling phase. 

 

true - The event handler is executed in the capturing phase 

false - The event handler is executed in the bubbling phase 

• AddEventListenerOpen (eventName As String, params As Object) 

All the code between AddEventListenerOpen and CloseEventListener is transpiled 

between those lines 

 

eventName: A String that specifies the name of the event. (Do not use the 'on' prefix!) 

 

An AddEventListenerOpen MUST always be closed by an CloseEventListener! 

 

params: params it has to pass in the function() method 

 
req.AddEventListenerOpen("onreadystatechange", aEvt) 

... 

req.CloseEventListener 

 

transpiles to: 

 
req.onreadystatechange = function(aEvt) { 

... 

}; 

• AddEventListenerOpenAsync (eventName As String, params As Object) 

All the code between AddEventListenerOpenAsync and CloseEventListener is transpiled 

between those lines 

 

eventName: A String that specifies the name of the event. (Do not use the 'on' prefix!) 

 

An AddEventListenerOpenAsync MUST always be closed by an CloseEventListener! 

 

params: params it has to pass in the function() method 

 
req.AddEventListenerOpenAsync("onreadystatechange", aEvt) 

... 

req.CloseEventListener 

 

transpiles to: 

 
req.onreadystatechange = async function(aEvt) { 



 181 BANano – Essentials 

 
... 

}; 

• After (htmlOrElement As Object) As BANanoElement 

Add some html as a sibling after each of the matched elements 

• Append (htmlOrElement As Object) As BANanoElement 

Add some html as a child at the end of each of the matched elements 

• Attributes As List 

Returns a list with the Attributes 

• Before (htmlOrElement As Object) As BANanoElement 

Add some html as a sibling before each of the matched elements 

• Children (filter As String) As BANanoElement() 

Get the direct children of all of the nodes with a filter 

• ClientHeight As Double 

Returns the height of an element, including padding 

• ClientLeft As Double 

Returns the width of the left border of an element 

• ClientTop As Double 

Returns the width of the top border of an element 

• ClientWidth As Double 

Returns the width of an element, including padding 

• CloseEventListener 

Closes an AddEventListenerOpen or AddEventListenerOpenAsync method 

• Closest (filter As String) As BANanoElement() 

Find the first ancestor that matches the selector for each node 

• EachEnd 

Close a EachStart 

• EachStart (element As BANanoElement, index As Int) 

Loop through all of the elements and execute the code between EachStart and EachEnd 

for each element. 

 

e.g. 

 
Dim element as BANanoElement 

Dim index as Int 

 

allelements.EachStart(element, index) 

   log(element) 

allelements.EachEnd 

• Empty As BANanoElement 

Remove all child nodes of the matched elements. 

• Filter (filter As String) As BANanoElement() 

Get the direct children of the nodes with a filter 

• Find (filter As String) As BANanoElement() 

Get all of the descendants of the nodes with a filter 

• First As BANanoElement 

Retrieve the first of the matched nodes 

• Get (target As Object) As BANanoElement 

Gets the BANanoElement with the given ID (use '#') 

• GetAttr (name As String) As String 

Handle attributes for the matched elements 



 182 BANano – Essentials 

 

• GetChecked As Boolean 

Retrieve the checked value of matched elements 

• GetData (name As String) As String 

Handle data-* attributes for the matched elements 

• GetField (field As String) As BANanoObject 

Gets a field value 

 

Shortcut method for .ToObject.GetField() 

• GetHTML As String 

Retrieve the html of the elements 

• GetScrollLeft As Double 

Sets or returns the number of pixels an element's content is scrolled horizontally 

• GetScrollTop As Double 

Sets or returns the number of pixels an element's content is scrolled vertically 

• GetStyle (property As String) As String 

Returns the property value 

• GetText As String 

Retrieve the text content of matched elements 

• GetValue As String 

Retrieve the value content of matched elements 

• HandleEvents (events As String, module As Object, 

method As String) As BANanoElement 

module: the module or class where the method is defined 

method: the method you want to call 

 

This function is the same as on(), but it executes the e.preventDefault() 

 

The method MUST be defined like this: 

 
sub methodName(event As BANanoEvent) 

   log(event.ID) 

end sub 

• HasAttr (name As String) As Boolean 

Find if any of the matched elements contains the attribute passed 

• HasClass (Class As String) As Boolean 

Find if any of the matched elements contains the class passed 

• Initialize (target As Object) 

Target: ID (use #), class (use ."), tag etc... 

• IsInitialized As Boolean 

• Last As BANanoElement 

Retrieve the last of the matched nodes 

• Length As Int 

You can check how many elements are matched with .Length 

• LoadLayout (layoutName As String) 

Loads a .bjl layout (using ONLY BANano Custom views). 

 

You add/set BANano Custom Views in the Abstract Designer (Add View -> Custom 

view). Only these properties apply: 

Name = HTML ID 



 183 BANano – Essentials 

 

EventName: 

+ All CustomView Properties 

 

Note: As B4J custom components currently can't set the Parent property except to main, 

an own algorithm tries to determine it. 

 

layoutName must be a string. It cannot be a variable. 

 

Note: Must be done directly on a BANanoElement, not via a method or chaining 

 

e.g. 

Will Work: 

 
Dim pageHolder As BANanoElement = body.Append(html).Get("#pageHolder") 

pageHolder.LoadLayout("MainLayout") 

 

Dim UserTab As BANanoElement = SKTabs1.GetTabContents(0) ' returns a 

BANanoElement 

UserTab.LoadLayout("Users") 

 

Will NOT work: 

 
body.Append(html).Get("#pageHolder").LoadLayout("MainLayout") 

SKTabs1.GetTabContents(0).LoadLayout("Users") 

• LoadLayoutAppend (layoutName As String) 

Loads a .bjl layout (using ONLY BANano Custom views). Does not empty the Target first. 

 

You add/set BANano Custom Views in the Abstract Designer (Add View -> Custom 

view). Only these properties apply: 

Name = HTML ID 

EventName: 

+ All CustomView Properties 

 

Note: As B4J custom components currently can't set the Parent property except to main, 

an own algorithm tries to determine it. 

 

layoutName must be a string. It cannot be a variable. 

 

Note: Must be done directly on a BANanoElement, not via a method or chaining 

 

e.g. 

Will Work: 

 
Dim pageHolder As BANanoElement = body.Append(html).Get("#pageHolder") 

pageHolder.LoadLayoutAppend("MainLayout") 

 

Dim UserTab As BANanoElement = SKTabs1.GetTabContents(0) ' returns a 

BANanoElement 

UserTab.LoadLayoutAppend("Users") 

 

Will NOT work: 

 
body.Append(html).Get("#pageHolder").LoadLayoutAppend("MainLayout") 

SKTabs1.GetTabContents(0).LoadLayoutAppend("Users") 



 184 BANano – Essentials 

 

• LoadLayoutArray (layoutName As String, emptyTargetFirst As Boolean) As Long 

Loads a .bjl layout (using ONLY BANano Custom views) as an array. You can NOT Dim 

one of the views in such a layout in Globals! 

 

You add/set BANano Custom Views in the Abstract Designer (Add View -> Custom 

view). Only these properties apply: 

Name = HTML ID 

EventName: 

+ All CustomView Properties 

 

Note: As B4J custom components currently can't set the Parent property except to main, 

an own algorithm tries to determine it. 

 

layoutName must be a string. It cannot be a variable. 

 

Note: Must be done directly on a BANanoElement, not via a method or chaining 

 

e.g. 

Will Work: 

 
Dim pageHolder As BANanoElement = body.Append(html).Get("#pageHolder") 

pageHolder.LoadLayout("MainLayout") 

 

Dim UserTab As BANanoElement = SKTabs1.GetTabContents(0) ' returns a 

BANanoElement 

UserTab.LoadLayout("Users") 

 

Will NOT work: 

 
body.Append(html).Get("#pageHolder").LoadLayout("MainLayout") 

SKTabs1.GetTabContents(0).LoadLayout("Users") 

 

Return: will return a unique number that has been added as suffix to every view in the 

layout. 

• Name As String 

• Not (filter As String) As BANanoElement() 

Remove known nodes from nodes 

• Off (events As String) As BANanoElement 

Remove event handler from matched nodes 

• OffsetHeight As Double 

Returns the height of an element, including padding, border and scrollbar 

• OffsetLeft As Double 

Returns the horizontal offset position of an element 

• OffsetTop As Double 

Returns the vertical offset position of an element 

• OffsetWidth As Double 

Returns the width of an element, including padding, border and scrollbar 

• On (events As String, module As Object, method As String) As BANanoElement 

module: the module or class where the method is defined 

method: the method you want to call 

 



 185 BANano – Essentials 

 

The method MUST be defined like this: 

 
sub methodName(event As BANanoEvent) 

   log(event.ID) 

end sub 

• Parent (filter As String) As BANanoElement() 

Retrieve each parent of the matched nodes, optionally filtered by a selector 

• Prepend (htmlOrElement As Object) As BANanoElement 

Add some html as a child at the beginning of each of the matched elements 

• Remove As BANanoElement 

Removes the matched elements. 

• RemoveAttr (name As String) As BANanoElement 

Handle removing attributes for the matched elements 

• RemoveClass (Class As String) As BANanoElement 

Remove html class(es) to all of the matched elements. 

• RemoveEventListener (eventName As String, callbackMethod As Object, 

useCapture As Boolean) 

Removes event handlers that have been attached with the addEventListener() method 

 

callbackMethod: Specifies the function to run when the event occurs. Use 

BANano.CallBackMethod() 

useCapture: A Boolean value that specifies the event phase to remove the event handler 

from. 

 

true - Removes the event handler from the capturing phase 

false - Removes the event handler from the bubbling phase 

• Render (htmlTemplate As String, jsonData As String) As BANanoElement 

Sets the innerHTML of the target using the htmlTemplate and the provided jsonData 

 

The htmlTemplate is a Mustache template. 

• RenderAfter (htmlTemplate As String, jsonData As String) As BANanoElement 

Add some html as a sibling after each of the matched elements using the htmlTemplate 

and the provided jsonData 

 

The htmlTemplate is a Mustache template. 

• RenderAppend (htmlTemplate As String, jsonData As String) As BANanoElement 

Add some html as a child at the end of each of the matched elements using the 

htmlTemplate and the provided jsonData 

 

The htmlTemplate is a Mustache template. 

• RenderBefore (htmlTemplate As String, jsonData As String) As BANanoElement 

Add some html as a sibling before each of the matched elements using the 

htmlTemplate and the provided jsonData 

 

The htmlTemplate is a Mustache template. 

• RenderPrepend (htmlTemplate As String) As BANanoElement 

Add some html as a child at the beginning of each of the matched elements using the 

htmlTemplate and the provided jsonData 

 

The htmlTemplate is a Mustache template. 

https://github.com/janl/mustache.js
https://github.com/janl/mustache.js
https://github.com/janl/mustache.js
https://github.com/janl/mustache.js
https://github.com/janl/mustache.js


 186 BANano – Essentials 

 

• RenderReplace (htmlTemplate As String, jsonData As String) As BANanoElement 

Replaces the target using the htmlTemplate and the provided jsonData 

 

The htmlTemplate is a Mustache template. 

• Replace (htmlOrElement As Object) As BANanoElement 

Replace the matched elements with the passed elements 

• Result As Object 

Gets the result 

 

Shortcut method for .ToObject.Result() 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• Scroll 

Scroll to the first matched element, smoothly if supported. 

• ScrollHeight As Double 

Returns the entire height of an element, including padding 

• ScrollWidth As Double 

Returns the entire width of an element, including padding 

• SetAttr (name As String, value As String) As BANanoElement 

Handle attributes for the matched elements 

• SetChecked (checked As Boolean) As BANanoElement 

Set the checked value of matched elements 

• SetData (name As String, value As String) As BANanoElement 

Handle data-* attributes for the matched elements 

• SetField (field As String, value As Object) 

Sets a field value 

 

Shortcut method for .ToObject.SetField() 

• SetHTML (html As String) As BANanoElement 

Set the html of the elements. 

 

Note: it is better to use the Render method, as it is much more powerful 

• SetScrollLeft (x As Double) 

Sets or returns the number of pixels an element's content is scrolled horizontally 

• SetScrollTop (y As Double) 

Sets or returns the number of pixels an element's content is scrolled vertically 

https://github.com/janl/mustache.js


 187 BANano – Essentials 

 

• SetStyle (jsonString As String) 

Sets the style of the target BANanoElement. 

 

example: 

 
' must be valid Json! 

BANano.GetElement("#someid").SetStyle($"{ "width": "200px", "height": 

"200px", "background": "green", "border-radius": "5px" }"$) 

• SetText (text As String) As BANanoElement 

Set the text content of matched elements 

• SetValue (text As String) As BANanoElement 

Set the value content of matched elements 

• Siblings (filter As String) As BANanoElement() 

Get the siblings of all of the nodes with a filter 

• ToggleClass (Class As String) As BANanoElement 

Toggles the class of matched elements 

• ToObject As BANanoObject 

Returns a BANanoObject: nodes[0], the native html object 

• Trigger (event As String, params As String()) As BANanoElement 

Triggers an event. 

 

Params: MUST be defined as Array("", 0, ...) 

Will be returned in the event.detail property 

• Wrap (html As String) As BANanoElement 

Wraps the matched element(s) with the passed argument. It accepts an html tag like 

.wrap('<div>') 

  



 188 BANano – Essentials 

 

21.5 BANanoEvent 

 

Fields 

• ReturnValue As Boolean 

Functions 

• AltKey As Boolean 

• Buttons As Int 

• Char As String 

• CharCode As String 

• ClientX As Int 

• ClientY As Int 

• CtrlKey As Boolean 

• CurrentTarget As Object 

• Data As Object 

• DeltaMode As Int 

• DeltaX As Int 

• DeltaY As Int 

• DeltaZ As Int 

• Detail As Object() 

• ID As String 

• Key As String 

• KeyCode As String 

• MetaKey As Boolean 

• OffsetX As Int 

• OffsetY As Int 

• OtherField (field As String) As BANanoObject 

Gets another field value 

• PageX As Int 

• PageY As Int 

• PreventDefault As Object 

• Reason As Object 

• RelatedTarget As Object 

• ScreenX As Int 

• ScreenY As Int 

• ShiftKey As Boolean 

• StopPropagation As Object 

• Target As Object 

• TimeStamp As Int 

• Type As String 

• Value As Object 

Properties 

• Tag As Object 



 189 BANano – Essentials 

 

21.6 BANanoFetch 

 

Functions 

• Else (error As Object) 

Continues here after the Fetch if an error occurs. 

• ElseWait (returnValue As Object) 

Is the same as .Else, except the function will be async. 

 

This can be used if the code in the .ElseWait clause contains ...Wait functions or Sleep 

• End 

Terminates the promise Then/Else/Finally 

• Finally 

Will always run at the end 

• FinallyWait 

Is the same as .Finally, except the function will be async. 

 

This can be used if the code in the .FinallyWait clause contains ...Wait functions or Sleep 

• GetField (field As String) As BANanoObject 

Gets a field value 

• Initialize (resource As String, init As BANanoFetchOptions) As BANanoPromise 

Does a Fetch with a resource (e.g. url) and an optional Request options object 

Pass null if no request options need to be set 

• Result As Object 

Gets the result 

• Return (data As Object) 

Returns something in a then part. Can be passed on the next then. 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

• Then (response As Object) 

Continues here after the Fetch or another then/else 

• ThenWait (returnValue As Object) 

Is the same as .Then, except the function will be async. 



 190 BANano – Essentials 

 

 

This can be used if the code in the .ThenWait clause contains ...Wait functions or Sleep 

  



 191 BANano – Essentials 

 

21.7 BANanoFetchOptions 

 

Functions 

• GetField (field As String) As BANanoObject 

Gets a field value 

• Initialize 

Creates a new options object. 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

Properties 

• Body As Object 

Any body that you want to add to your request: this can be a Blob, BufferSource, 

FormData, 

URLSearchParams, or USVString object. 

 

Note that a request using the GET or HEAD method cannot have a body. 

• Cache As String 

The cache mode you want to use for the request. 

• Credentials As Object 

The request credentials you want to use for the request: omit, same-origin, or include. 

To automatically send cookies for the current domain, this option must be provided. 

 

Starting with Chrome 50, this property also takes a FederatedCredential instance or a 

PasswordCredential instance. 

• Headers As Object 

Any headers you want to add to your request, contained within a Headers object or an 

object literal with ByteString values. 

Note that some names are forbidden. 



 192 BANano – Essentials 

 

• Integrity As String 

Contains the subresource integrity value of the request (e.g., sha256-

BpfBw7ivV8q2jLiT13fxDYAe2tJllusRSZ273h2nFSE=). 

• KeepAlive As Boolean 

The keepalive option can be used to allow the request to outlive the page. 

• Method As String 

The request method, e.g., GET, POST. 

 

Default: GET 

• Mode As String 

The mode you want to use for the request, e.g., cors, no-cors, or same-origin. 

• Redirect As String 

The redirect mode to use: follow (automatically follow redirects), 

error (abort with an error if a redirect occurs), or manual (handle redirects manually). 

In Chrome the default is follow (before Chrome 47 it defaulted to manual). 

• Referrer As String 

A USVString specifying no-referrer, client, or a URL. The default is client. 

• ReferrerPolicy As String 

Specifies the value of the referred HTTP header. May be one of no-referrer, 

no-referrer-when-downgrade, origin, origin-when-cross-origin, unsafe-url. 

• Signal As Object 

An AbortSignal object instance; allows you to communicate with a fetch request and 

abort it if desired via an AbortController. 

  



 193 BANano – Essentials 

 

21.8 BANanoFetchResponse 

 

Functions 

• ArrayBuffer As Object 

Takes a Response stream and reads it to completion. It returns a promise that resolves 

with an ArrayBuffer. 

• Blob As Object 

Takes a Response stream and reads it to completion. It returns a promise that resolves 

with a Blob. 

• Body As Object 

A simple getter used to expose a ReadableStream of the body contents. 

• BodyUsed As Boolean 

Stores a Boolean that declares whether the body has been used in a response yet. 

• Clone As BANanoFetchResponse 

Creates a clone of a Response object. 

• Error As BANanoFetchResponse 

Returns a new Response object associated with a network error. 

• FormData As Object 

Takes a Response stream and reads it to completion. It returns a promise that resolves 

with a FormData object. 

• GetField (field As String) As BANanoObject 

Gets a field value 

• Headers As Object 

Contains the Headers object associated with the response. 

• Json As Object 

Takes a Response stream and reads it to completion. It returns a promise that resolves 

with the result of parsing the body text as JSON. 

• OK As Boolean 

Contains a boolean stating whether the response was successful (status in the range 

200-299) or not. 

• Redirect (url As String, Status As Int) As BANanoFetchResponse 

The redirect() method returns a Response resulting in a redirect to the specified URL. 

Status is optional, pass null if not used. 

• Redirected As Boolean 

Indicates whether or not the response is the result of a redirect; that is, its URL list has 

more than one entry. 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 



 194 BANano – Essentials 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

• Status As Int 
Contains the status code of the response (e.g., 200 for a success). 

• StatusText As String 
Contains the status message corresponding to the status code (e.g., OK for 200). 

• Text As Object 
Takes a Response stream and reads it to completion. It returns a promise that resolves 
with a USVString (text). 

• Type As String 
Contains the type of the response (e.g., basic, cors). 

• Url As String 
Contains the URL of the response. 

Properties 

• UseFinalUrl As Boolean 

State whether this is the final URL of the response. 

  



 195 BANano – Essentials 

 

21.9 BANanoGeoLocation 

 

Functions 

• ClearWatch (watchID As Int) 

Stops the watchPosition() method. 

• GetCurrentPosition (PositionCallback As Object, ErrorCallback As Object) 

Only works with https! 

 

Return the user's position 

 

PositionCallback: MUST look like functionName(position AS BANanoGeoPosition) 

ErrorCallback: MUST look like functionName(error As int): 

 

1: Permission Denied 

2: Position Unavailable 

3: Timeout 

Else: Unknown error 

• GetField (field As String) As BANanoObject 

Gets a field value 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

• WatchPosition (PositionCallback As Object, ErrorCallback As Object) As Int 

Returns the current position of the user and continues to return updated position as the 

user moves (like the GPS in a car). 

 

PositionCallback: MUST look like functionName(position AS BANanoGeoPosition) 

ErrorCallback: MUST look like functionName(error As BANanoGeoError) 

 

Returns a watch id that then can be used to unregister the handler by passing it to the 

Geolocation.clearWatch() method 

  



 196 BANano – Essentials 

 

21.10 BANanoGeoPosition 

 

Functions 

• Accuracy As Double 

The accuracy of position (always returned) 

• Altitude As Double 

The altitude in meters above the mean sea level (returned if available) 

• AltitudeAccuracy As Double 

The altitude accuracy of position (returned if available) 

• Heading As Double 

The heading as degrees clockwise from North (returned if available) 

• Latitude As Double 

The latitude as a decimal number (always returned) 

• Longitude As Double 

The longitude as a decimal number (always returned) 

• Speed As Double 

The speed in meters per second (returned if available) 

• Timestamp As Double 

The date/time of the response (returned if available) 

  



 197 BANano – Essentials 

 

21.11 BANanoHeader 

 

Fields 

• Author As String 

• BackgroundColor As String 

• BaseTarget As String 

• BaseURL As String 

• Charset As String 

• Description As String 

• Expires As Long 

• Keywords As String 

• Language As String 

• Manifest As String 

• MaskIconColor As String 

• MSTileColor As String 

• OnDOMContentLoaded As String 

• ThemeColor As String 

• Title As String 

• Viewport As String 

Functions 

• AddAppleTouchIcon (AssetFileNameOrURL As String, size As String) 

home screen icons for Safari and iOS. Size e.g. 16x16. 

• AddAppleTouchStartupImage (AssetFileNameOrURL As String, 

deviceWidth As String, deviceHeight As String, devicePixelRatio As String) 

startup screen for Safari on iOS. e.g. ("myimage", "320px", "568px", "2") 

• AddCSSFile (AssetFileNameOrURL As String) 

Load an extra css file. If it is an asset file it will be copied to the styles folder 

 

For locale files (not URLs), you can use the * wildcard 

• AddCSSFileForLater (AssetFileNameOrURL As String) 

Load an extra css file. If it is an asset file it will be copied to the styles folder 

This asset will not be loaded at loading the html file, but you will have to do it 'Later' 

using the BANano.AssetsLoad... methods 

 

For locale files (not URLs), you can use the * wildcard 

• AddFavicon (AssetFileNameOrURL As String, size As String) 

Add additional fav icons. Size e.g. 16x16. 

• AddJavascriptES6File (AssetFileName As String) 

Load an extra ES6 javascript file. It must be an asset file and cannot be an url. 

 

You can use the * wildcard 

• AddJavascriptES6FileForLater (AssetFileName As String) 

Load an extra ES6 javascript file. It must be an asset file and cannot be an url. 

This asset will not be loaded at loading the html file, but you will have to do it 'Later' 

using the BANano.AssetsLoad... methods 



 198 BANano – Essentials 

 

 

You can use the * wildcard 

• AddJavascriptFile (AssetFileNameOrURL As String) 

Load an extra javascript file. If it is an asset file it will be copied to the scripts folder 

 

For locale files (not URLs), you can use the * wildcard 

• AddJavascriptFileForLater (AssetFileNameOrURL As String) 

Load an extra javascript file. If it is an asset file it will be copied to the scripts folder 

This asset will not be loaded at loading the html file, but you will have to do it 'Later' 

using the BANano.AssetsLoad... methods 

 

For locale files (not URLs), you can use the * wildcard 

• AddJavascriptFileForLaterSW (AssetFileNameOrURL As String) 

Does the same a AddJavascriptFileForLater() but will write in also in the ImportScripts() 

method in the Service Worker file. 

 

NOTE: such a javascript file can NOT use window or document or any other reference to 

the DOM as a Service Worker cannot access this! 

 

If it is a javascript file used in a BANanoLibrary, it MUST be added in the app explicitly! 

 

These javascript files will NOT be merged! 

• AddJavascriptFileSW (AssetFileNameOrURL As String) 

Does the same a AddJavascriptFile() but will write it also in the ImportScripts() method in 

the Service Worker file. 

 

NOTE: such a javascript file can NOT use window or document or any other reference to 

the DOM as a Service Worker cannot access this! 

 

If it is a javascript file used in a BANanoLibrary, it MUST be added in the app explicitly! 

 

These javascript files will NOT be merged! 

• AddManifestIcon (AssetFileNameOrURL As String, size As String) 

PWA Icon used in the manifest.json file. Size e.g. 16x16. 

• AddMeta (metaTag As String) 

must be a full html meta tag. Use smartstrings! e.g. 

 
$"<meta name="keywords" content="HTML,CSS,XML,JavaScript">"$ 

• AddMSTileIcon (AssetFileNameOrURL As String, size As String) 

home screen icons for Microsoft. Size e.g. 16x16. 

• SetAndroidMaskIcon (AssetFileNameOrURL As String, size As String) 

Set the Mask Icon for Android devices. Size e.g. 731x731. 

• SetAppleMaskIcon (AssetFileNameOrURL As String) 

Set the Mask Icon for Apple devices 

• UnzipAdditionalAssets (fileName As String) 

Unzips a .zip file (with folders) in the root folder of your app on Build() 

 

The .css and .js files will be loaded when the App initializes. 

Additionally, if using a Service Worker, all the files in the zip will also be cached.  



 199 BANano – Essentials 

 

21.12 BANanoHistory 

 

Functions 

• Back 

Go back to the previous page 

• Forward 

Go to the next page 

• GetField (field As String) As BANanoObject 

Gets a field value 

• Go (step As Int) 

Navigate back or forward multiple levels deep 

• Length As Int 

Number of entries in the history 

• PushState (state As Object, url As Object) 

Create a new history entry programmatically 

State must be serializable and is limited in size. 

 

Note that the URL needs to belong to the same origin domain of the current URL. 

• ReplaceState (state As Object, url As Object) 

Allows you to edit the current history state. 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

Properties 

• State As Object [read only] 

Returns the current state object 

  



 200 BANano – Essentials 

 

21.13 BANanoJSONGenerator (DEPRECIATED) 

 

Use the normal B4J Json library instead. 

 

Functions 

• Initialize (Map As Map) 

Initializes the object with the given Map. 

• Initialize2 (List As List) 

Initializes the object with the given List. 

• ToPrettyString (Indent As Int) As String 

Creates a JSON string from the initialized object. 

The string will be indented and easier for reading. 

Note that the string created is a valid JSON string. 

Indent - Number of spaces to add to each level. 

• ToString As String 

Creates a JSON string from the initialized object. 

This string does not include any extra whitespace. 

  



 201 BANano – Essentials 

 

21.14 BANanoJSONParser (DEPRECIATED) 

 

Use the normal B4J Json library instead. 

 

Functions 

• Initialize (Text As String) 

Initializes the object and sets the text that will be parsed. 

• NextArray As List 

• NextObject As Map 

Parses the text assuming that the top level value is an object. 

• NextValue As String 

  



 202 BANano – Essentials 

 

21.15 BANanoJSONQuery 

 

Functions 

• All As List 

Returns all records. 

• Count As Int 

Returns the number of records. 

• Find (field As String, value As Object) As Map 

Returns the first record, matching the field with the passed value. 

• First As Map 

Returns the first record. 

• GroupBy (field As String) As BANanoJSONQuery 

Returns a Map where all records are grouped by field. 

 

The key in the map is the group field, the value is a list of records matching the group 

field. 

• Initialize (json As Object) 

Initializes with a Json Object (must be an array of records). 

• Initialize2 (jsonString As String) 

Initializes with a Json String. 

• Last As Map 

Returns the last record. 

• Limit (limit As Int) As BANanoJSONQuery 

Limits the number of records returned. Often used together with Offset. 

 

e.g. .Limit(5).Offset(20).All returns records 21,22,23,24,25 

• Offset (offset As Int) As BANanoJSONQuery 

Offset in the recordset. Often used together with Limit. 

 

e.g. .Limit(5).Offset(20).All returns records 21,22,23,24,25 

• Order (jsonOrder As String) As BANanoJSONQuery 

Orders the result of the query. 

 

"{'FieldName' : 'desc/asc', ...}" 

• OrWhere (jsonSelector As String) As BANanoJSONQuery 

Must be used after a Where. 

 

A selector is a string in this format: 

 
"{'FieldName.Operator' : value, ...}" 

 

e.g. .Where(...).OrWhere("{'rating.$eq': 8.4, 'name.$li': 
/braveheart/i"}") 

 

if the operator is omitted, .$eq is used. 

 

Possible operators: 

 
.$eq: Equal 



 203 BANano – Essentials 

 
.$ne: Not Equal 

.$lt: Less than 

.$gt: Greater than 

.$bt: Between (expects an Array, e.g. [4, 6]) 

.$in: In (expects an Array, e.g. [6,15]) 

.$ni: Not in (expects an Array, e.g. [6,15]) 

.$li: Like (expects a String or a regex expression) 

• Pluck (field As String) As List 

Returns an array containing all values of field. 

• SelectFields (fields As List) As BANanoJSONQuery 

Returns an array of json objects with a subset of only the fields past . 

• ToJQ As BANanoJSONQuery 

Returns a subset of the records, using the query settings. 

The result is a new BANanoJSONQuery object. 

 

e.g. 

 
Dim resultJQ as BANanoJSONQuery 

resultJQ = placesJQ.Where("'name': 'Bayview'").ToJQ 

 

resultJQ.Where("'types.$eq': 'polictical'").All 

 

• Unique (field As String) As BANanoJSONQuery 

Returns a List with the unique values of a field. 

• Where (jsonSelector As String) As BANanoJSONQuery 

A selector is a string in this format: 

 
"{'FieldName.Operator' : value, ...}" 

 

e.g. .Where("{'rating.$eq': 8.4, 'name.$li': /braveheart/i}") 

 

if the operator is omitted, .$eq is used. 

 

Possible operators: 

 
.$eq: Equal 

.$ne: Not Equal 

.$lt: Less than 

.$gt: Greater than 

.$bt: Between (expects an Array, e.g. [4,6]) 

.$in: In (expects an Array, e.g. [6,15]) 

.$ni: Not in (expects an Array, e.g. [6,15]) 

.$li: Like (expects a String or a regex expression) 

  



 204 BANano – Essentials 

 

21.16 BANanoLocation 

 

Functions 

• Assign (URL As String) 

The assign() method loads a new document. 

The difference between this method and replace(), is that replace() removes the URL of 

the current document from the document history, 

meaning that it is not possible to use the 'back' button to navigate back to the original 

document. 

• GetField (field As String) As BANanoObject 

Gets a field value 

• GetHash As String 

Sets or returns the anchor part (#) of a URL 

• GetHost As String 

Sets or returns the hostname and port number of a URL 

• GetHostName As String 

Sets or returns the hostname of a URL 

• GetHref As String 

Sets or returns the entire URL 

• GetPathName As String 

Sets or returns the path name of a URL 

• GetPort As Int 

Sets or returns the port number of a URL 

• GetProtocol As String 

Sets or returns the protocol of a URL 

• GetSearch As String 

Sets or returns the querystring part of a URL 

• Reload (forceGet As Boolean) 

The reload() method is used to reload the current document. 

The reload() method does the same as the reload button in your browser. 

 

By default, the reload() method reloads the page from the cache, but you can force it to 

reload the page 

from the server by setting the forceGet parameter to true 

• Replace (newURL As String) 

The replace() method replaces the current document with a new one. 

The difference between this method and assign(), is that replace() removes the URL of the 

current document from the document history, 

meaning that it is not possible to use the 'back' button to navigate back to the original 

document. 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 



 205 BANano – Essentials 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

• SetHash (hash As String) 

Sets or returns the anchor part (#) of a URL 

• SetHost (host As String) 

Sets or returns the hostname and port number of a URL 

• SetHostName (hostName As String) 

Sets or returns the hostname of a URL 

• SetHref (href As String) 

Sets or returns the entire URL 

• SetPathName (pathName As String) 

Sets or returns the path name of a URL 

• SetPort (port As Int) 

Sets or returns the port number of a URL 

• SetProtocol (protocol As String) 

Sets or returns the protocol of a URL 

• SetSearch (search As String) 

Sets or returns the querystring part of a URL 

Properties 

• Origin As String [read only] 

Returns the protocol, hostname and port number of a URL 

  



 206 BANano – Essentials 

 

21.17 BANanoMQTTClient (DEPRECIATED) 

 

Use the normal B4J jMQTT library instead. 

 

Events 

• Connected (Success As Boolean) 

• Disconnected 

• MessageArrived (Topic As String, Payload() As Byte) 

Functions 

• Close 

• Connect 

• Connect2 (Options As BANanoMQTTConnectOptions) 

• Initialize (EventName As String, Server As String, port As Int, path As String, 

isSecure As Boolean, ClientID As String) 

Only Websockets are supported 

• IsInitialized As Boolean 

• Publish (Topic As String, Payload As Byte()) 

• Publish2 (Topic As String, Payload As Byte(), QOS As Int, Retained As Boolean) 

• Subscribe (Topic As String, QOS As Int) 

• Unsubscribe (Topic As String) 

Properties 

• ClientID As String [read only] 

• QOS_0_MOST_ONCE As Int [read only] 

• QOS_1_LEAST_ONCE As Int [read only] 

• QOS_2_EXACTLY_ONCE As Int [read only] 

  



 207 BANano – Essentials 

 

21.18 BANanoMQTTConnectOptions (DEPRECIATED) 

 

Use the normal B4J jMQTT library instead. 

 

Functions 

• Initialize (UserName As String, Password As String) 

Initializes the object and sets the username and password. 

Pass empty strings if username or password are not required. 

• SetLastWill (Topic As String, Payload As Byte(), QOS As Int, Retained As Boolean) 

Properties 

• CleanSession As Boolean [write only] 

If set to true (default value) then the state will not be preserved in the case of client 

restarts. 

• Password As String 

Gets or sets the connection password. 

• UserName As String 

Gets or sets the connection user name. 

  



 208 BANano – Essentials 

 

21.19 BANanoMediaQuery 

 

Events 

• Matched() 

Functions 

• GetField (field As String) As BANanoObject 

Gets a field value 

• Initialize (mediaQueryList As String) 

mediaQueryList examples: 

 
(max-width: 400px) 

(min-width: 401px) and (max-width: 600px) 

(min-width: 601px) and (max-width: 800px) 

(min-width: 801px) 

(orientation: portrait) 

(orientation: landscape) 

• IsInitialized As Boolean 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

  



 209 BANano – Essentials 

 

21.20 BANanoMutationObserver 

 

Events 

• CallBack (records() As BANanoMutationRecord, 

observer As BANanoMutationObserver) 

Functions 

• Disconnect 

Stops the MutationObserver instance from receiving further notifications until and unless 

Observe() is called again. 

• GetField (field As String) As BANanoObject 

Gets a field value 

• Initialize (callbackEventName As String) 

callbackEventName: the eventName of the CallBack event. 

 
' record: A BANanoMutationRecord represents an individual DOM 

mutation. 

' observer: this observer 

Sub EventName_CallBack(record As BANanoMutationRecord, observer As 

BANanoMutationObserver) 

 

End Sub 

• Observe (target As Object) 

target: Which node (or parent node) to observe 

Will use the settings on this object. 

 

At least one of the following has to be set to true for it to work. 

 

.Attributes 

.ChildList 

.CharacterData 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 



 210 BANano – Essentials 

 

• TakeRecords As BANanoMutationRecord() 

returns an array of all matching DOM changes that have been detected but not yet 

processed by the observer's callback function, 

leaving the mutation queue empty. The most common use case for this is to immediately 

fetch all pending mutation records 

immediately prior to disconnecting the observer, so that any pending mutations can be 

processed when stopping down the observer. 

Properties 

• AttributeFilter As List [write only] 

An array of DOMString objects, each specifying the name of one attribute whose value is 

to be monitored for changes. 

There is no default value. 

• AttributeOldValue As Boolean [write only] 

A Boolean value indicating whether or not the prior value of a changed attribute should 

be included in the MutationObserver.oldValue property 

when reporting attribute value changes. If true, oldValue is set accordingly. If false, it is 

not. 

 

When using attributeOldValue, setting the attributes option to true is optional. 

• Attributes As Boolean [write only] 

A Boolean value indicating whether or not to report through the callback any changes to 

the values of attributes on the node or nodes being monitored. 

The default value is false. 

 

If true, the callback specified when observe() was used to start observing the node or 

subtree will be called any time one or more attributes have changed on observed nodes. 

 

You can expand the capabilities of attribute mutation monitoring using other options: 

 

attributeFilter lets you specify specific attribute names to monitor instead of monitoring 

all attributes. 

attributeOldValue lets you specify whether or not you want the previous value of 

changed attributes to be included in the MutationRecord's oldValue property. 

subtree lets you specify whether to watch the target node and all of its descendants 

(true), or just the target node (false). 

 

If you set either attributeFilter or attributeOldValue to true, attributes is automatically 

assumed to be true, even if you don't expressly set it as such. 

• CharacterData As Boolean [write only] 

A Boolean value indicating whether or not to call the observer's callback function when 

textual nodes' values change. 

 

If true, the callback specified when observe() was used to start observing the node or 

subtree is called any time the contents of a text node are changed. 

 

You can expand the capabilities of attribute mutation monitoring using other options: 

 

characterDataOldValue lets you specify whether or not you want the previous value of 

changed text nodes to be provided using the MutationRecord's oldValue property. 



 211 BANano – Essentials 

 

subtree lets you specify whether to watch the target node and all of its descendants 

(true), or just the target node (false). 

 

If you set characterDataOldValue to true, characterData is automatically assumed to be 

true, even if you don't expressly set it as such. 

• CharacterDataOldValue As Boolean [write only] 

A Boolean value indicating whether or not to set the MutationRecord's oldValue property 

to be a string containing the value of 

the character node's contents prior to the change represented by the mutation record. 

 

By default, only changes to the text of the node specified as the target parameter when 

you called observe() are monitored. 

To watch for changes to the text contents of all descendants of target, set the subtree 

option to true. 

 

If you set characterDataOldValue to true, characterData is automatically assumed to be 

true, even if you don't expressly set it as such. 

• ChildList As Boolean [write only] 

A Boolean value indicating whether or not to invoke the callback function when new 

nodes are added to or removed from the section of the DOM being monitored. 

If subtree is false, only the node indicated by the observer's target node is monitored for 

changes. Setting subtree to true causes addition or removal of nodes 

anywhere within the subtree rooted at target to be reported. 

• SubTree As Boolean [write only] 

Set to true to extend monitoring to the entire subtree of nodes rooted at target. All of the 

other MutationObserverInit properties are then extended to all of the nodes 

in the subtree instead of applying solely to the target node. 

 

The default value is false. 

  



 212 BANano – Essentials 

 

21.21 BANanoMutationRecord 

 

Functions 

• AddedNodes As BANanoObject() 

Return the nodes added. Will be empty if no nodes were added. 

• AttributeName As String 

Returns the local name of the changed attribute, or null. 

• AttributeNamespace As String 

Returns the namespace of the changed attribute, or null. 

• GetField (field As String) As BANanoObject 

Gets a field value 

• NextSibling As BANanoObject 

Return the next sibling of the added or removed nodes, or null. 

• OldValue As String 

The return value depends on the MutationRecord.type. 

 

For attributes, it is the value of the changed attribute before the change. 

For characterData, it is the data of the changed node before the change. 

For childList, it is null. 

• PreviousSibling As BANanoObject 

Return the previous sibling of the added or removed nodes, or null. 

• RemovedNodes As BANanoObject() 

Return the nodes removed. Will be empty if no nodes were removed. 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

• Target As BANanoObject 

Returns the node the mutation affected, depending on the Type. 

 

For attributes, it is the element whose attribute changed. 

For characterData, it is the CharacterData node. 

For childList, it is the node whose children changed. 



 213 BANano – Essentials 

 

• TypeRecord As String 

Returns 

"attributes" if the mutation was an attribute mutation, 

"characterData" if it was a mutation to a CharacterData node, 

"childList" if it was a mutation to the tree of nodes. 

  



 214 BANano – Essentials 

 

21.22 BANanoNavigator 

 

Functions 

• AppCodeName As String 

Returns the code name of the browser 

• AppName As String 

Returns the name of the browser 

• AppVersion As String 

Returns the version information of the browser 

• CookieEnabled As Boolean 

Determines whether cookies are enabled in the browser 

• GetField (field As String) As BANanoObject 

Gets a field value 

• JavaEnabled As Boolean 

Specifies whether or not the browser has Java enabled 

• Language As String 

Returns the language of the browser 

• OnLine As Boolean 

Determines whether the browser is online 

• Platform As String 

Returns for which platform the browser is compiled 

• Product As String 

Returns the engine name of the browser 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

• UserAgent As String 

Returns the user-agent header sent by the browser to the server 

  



 215 BANano – Essentials 

 

21.23 BANanoObject 

 

Functions 

• AddEventListener (eventName As String, callbackMethod As Object, 

useCapture As Boolean) 

eventName: A String that specifies the name of the event. (Do not use the 'on' prefix!) 

callbackMethod: Specifies the function to run when the event occurs. Use 

BANano.CallBackMethod() 

useCapture: A Boolean value that specifies whether the event should be executed in the 

capturing or in the bubbling phase. 

 

true - The event handler is executed in the capturing phase 

false - The event handler is executed in the bubbling phase 

• AddEventListenerOpen (eventName As String, params As Object) 

All the code between AddEventListenerOpen and CloseEventListener is transpiled 

between those lines 

 

eventName: A String that specifies the name of the event. (Do not use the 'on' prefix!) 

 

An AddEventListenerOpen MUST always be closed by an CloseEventListener! 

 

params: params it has to pass in the function() method 

 
req.AddEventListenerOpen("onreadystatechange", aEvt) 

... 

req.CloseEventListener 

 

transpiles to: 

 
req.onreadystatechange = function(aEvt) { 

... 

}; 

• AddEventListenerOpenAsync (eventName As String, params As Object) 

All the code between AddEventListenerOpenAsync and CloseEventListener is transpiled 

between those lines 

 

eventName: A String that specifies the name of the event. (Do not use the 'on' prefix!) 

 

An AddEventListenerOpenAsync MUST always be closed by an CloseEventListener! 

 

params: params it has to pass in the function() method 

 
req.AddEventListenerOpenAsync("onreadystatechange", aEvt) 

... 

req.CloseEventListener 

 

transpiles to: 

 
req.onreadystatechange = async function(aEvt) { 

... 

}; 



 216 BANano – Essentials 

 

• ClientHeight As Double 

Returns the height of an element, including padding 

• ClientLeft As Double 

Returns the width of the left border of an element 

• ClientTop As Double 

Returns the width of the top border of an element 

• ClientWidth As Double 

Returns the width of an element, including padding 

• CloseEventListener 

Closes an AddEventListenerOpen or AddEventListenerOpenAsync method 

• Delete (property As String) 

The delete operator deletes a property from an object 

• Execute (params As List) As BANanoObject 

If BANanoObject is a function, then you can execute it directly with params. 

• GetField (field As String) As BANanoObject 

Gets a field value 

• GetFunction (functionName As String) As BANanoObject 

Gets a function. You can then directly call the Execute method on it. 

• GetScrollLeft As Double 

Sets or returns the number of pixels an element's content is scrolled horizontally 

• GetScrollTop As Double 

Sets or returns the number of pixels an element's content is scrolled vertically 

• HasOwnProperty (property As String) As Boolean 

Check whether a property is inherited 

• Initialize (jsObject As Object) 

Can be used e.g. to connect a BANanoObject to a JavaScript object 

• Initialize2 (jsObject As String, params As Object) As BANanoObject 

To initialize for a 'New libObjectName' javascript library 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

see RunMethod for more info on the Array system. 

 

e.g. Javascript: 

 
let datepicker = new When({ 

   input: document.getElementById('...'), 

   singleDate: true 

}); 

datepicker.showHeader = true; 

 

Translated to B4J: 

 
Dim datepicker As BANanoObject 

datepicker.Initialize2("When", CreateMap("input": 

BANano.GetElement("#datepicker").ToObject, "singleDate": True)) 

datepicker.RunMethod("showHeader", True) 

• Initialize3 (params As Object) As BANanoObject 

Initialize using a constructor on the JavaScript object. 

 



 217 BANano – Essentials 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 
Initialize3(Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
Initialize3("Alain") 

• Initialize4 (jsObject As String, params As Object) As BANanoObject 

Can be used e.g. to connect a BANanoObject to a JavaScript object, with parameters 

 

This is basically the .Initialize, but with parameters. It does NOT do a New like the 

Initialize2 method! 

• Initialize5 As BANanoObject 

Can be used create a plain Javascript object 

 

This is basically set the object in Javascript to {} 

• Initialize6 (javaScriptObject As String) 

Initialize a BANanoObject from a JavaScript object, defined as a SmartString. 

 

Initialize5 could also be written as b.Initialize6("{}") 

 

Example: 

 
Dim city As String = "Ieper" 

 

Dim b As BANanoObject 

b.Initialize6($"{ 

   body: "myBody", 

   name: "myName", 

   city: "${city}" 

}"$) 

 

Log(b) 

 

Log(b.GetField("body")) 

b.SetField("city", "Ieper Stad") 

 

Log(b) 

• Initialize7 (javaScriptObject As Object, constructor As String, params As Object) 

Initialize a new BANanoObject from a BANanoObjects constructor. 

 

Example: 

 

' in JavaScript 

' var innerConn = ... 

' var query = new innerConn.$sql.Query(SQL); 

Dim Query As BANanoObject 

Query.Initialize2(innerConn, "$sql.Query", SQL) 

• IsInitialized As Boolean 



 218 BANano – Essentials 

 

• OffsetHeight As Double 

Returns the height of an element, including padding, border and scrollbar 

• OffsetLeft As Double 

Returns the horizontal offset position of an element 

• OffsetTop As Double 

Returns the vertical offset position of an element 

• OffsetWidth As Double 

Returns the width of an element, including padding, border and scrollbar 

• RemoveEventListener (eventName As String, callbackMethod As Object, 

useCapture As Boolean) 

Removes event handlers that have been attached with the addEventListener() method 

 

callbackMethod: Specifies the function to run when the event occurs. Use 

BANano.CallBackMethod() 

useCapture: A Boolean value that specifies the event phase to remove the event handler 

from. 

 

true - Removes the event handler from the capturing phase 

false - Removes the event handler from the bubbling phase 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• ScrollHeight As Double 

Returns the entire height of an element, including padding 

• ScrollWidth As Double 

Returns the entire width of an element, including padding 

• Selector (selector As Object) As BANanoObject 

Useful for e.g. jQuery selectors 

 
Dim jQ as BANanoObject 

jQ.Initialize("$") 

JQ.Selector("#btn2").RunMethod("Click", Array(BANano.CallBack(Me, 

"btn2_clicked", Null)))) 

 

Sub Btn2_Clicked() 

   BANano.Msgbox("btn2 clicked through BANanoObject and jQuery!") 

End Sub 



 219 BANano – Essentials 

 

• SetField (field As String, value As Object) 

Sets a field value 

• SetScrollLeft (x As Double) 

Sets or returns the number of pixels an element's content is scrolled horizontally 

• SetScrollTop (y As Double) 

Sets or returns the number of pixels an element's content is scrolled vertically 

• ToString As String 

Converts the object to a String 

• ToString2 (base As Int) As String 

Converts the object to a String with a base 

 

e.g. 
Dim b as BANanoObject 

b = 15000 

Log(b.ToString(10)) ' base 10 

Log(b.ToString(16)) ' hex 

  



 220 BANano – Essentials 

 

21.24 BANanoPromise 

 

Functions 

• CallSub (module As Object, methodName As String, params As List) 

Calls a method. This method must use BANano.ReturnThen and/or BANano.ReturnElse 

to finish the method. 

 

e.g. 

 
Sub AFunction() 

   Dim returnValue As Long 'ignore 

   Dim promise As BANanoPromise 

 

   promise.CallSub(Me, "myfuncwait", Array(25)) 

   promise.Then(returnValue) 

      Log("The sum < 150 " & returnValue) 

   promise.else(returnValue) 

      Log("rejected: > 150 " & returnValue) 

   promise.End 

End Sub 

 

public Sub myFuncWait(toAdd As Long) 

   If 100 + toAdd < 150 Then 

      BANano.ReturnThen(100 + toAdd) 

   End If 

   Sleep(5000) 

   BANano.ReturnElse(100 + toAdd) 

End Sub 

• Else (returnValue As Object) 

Continues here after the CallSub with the returnValue from ReturnElse. 

 

See CallSub() for an example. 

• ElseWait (returnValue As Object) 

Is the same as .Else, except the function will be async. 

 

This can be used if the code in the .ElseWait clause contains ...Wait functions or Sleep 

• End 

Terminates the promise Then/Else/Finally 

• Finally 

Will always run at the end 

• FinallyWait 

Is the same as .Finally, except the function will be async. 

 

This can be used if the code in the .FinallyWait clause contains ...Wait functions or Sleep 

• GetField (field As String) As BANanoObject 

Gets a field value 

• IsInitialized As Boolean 

• NewEnd 

Close a NewStart or NewStartWait. 

• NewStart 

Make a new Promise with this signature: 

 



 221 BANano – Essentials 

 

 
Dim prom as BANanoPromise 

prom.NewStart 

   ... 

   BANano.ReturnThen(ret) 

   ... 

   BANano.ReturnElse(ret) 

prom.NewEnd 

prom.Then(response) 

 

prom.Else(response) 

 

prom.End 

 

 

Transpiles to: 

 

prom = new Promise(function(resolve, reject) { 

   ... 

   resolve(ret); 

   ... 

   reject(ret) 

}); 

prom.then(function(response) { 

 

}).else(function(response) { 

 

}); 

 

 

Example: 

 
Dim response As String 

Dim prom As BANanoPromise 'ignore 

prom.NewStart 

   BANano.ReturnThen("Alain") 

prom.NewEnd 

   prom.Then(response) 

   Return "Hello " & response & "!" 'ignore 

prom.Then(response) 'ignore 

   Log(response) ' prints: Hello Alain! 

prom.end 

• NewStartWait 

Same as NewStart, but needed if you use Wait methods 

 

Example: 

 
Dim response As String 

Dim prom As BANanoPromise 'ignore 

prom.NewStartWait 

   Sleep(3000) ' is a Wait method 

   BANano.ReturnThen("Alain") 

prom.NewEnd 

prom.Then(response) 

   Return "Hello " & response & "!" 'ignore 

prom.Then(response) 'ignore 

   Log(response) ' prints: Hello Alain! 

prom.end 

• Result As Object 

Gets the result 



 222 BANano – Essentials 

 

• Return (data As Object) 

Returns something in a then part. Can be passed on the next then. 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

• Then (returnValue As Object) As BANanoPromise 

Continues here after the promise.CallSub with the returnValue from ReturnThen. 

 

See CallSub() for an example. 

• ThenWait (returnValue As Object) 

Is the same as .Then, except the function will be async. 

 

This can be used if the code in the .ThenWait clause contains ...Wait functions or Sleep 

  



 223 BANano – Essentials 

 

21.25 BANanoRegEx 

 

Functions 

• Exec (s As String) As String 

Tests for a match in a string. Returns the first match 

• ExecAll (s As String) As String() 

Tests for a match in a string. Returns all matches 

• GetIndex (execResult As String()) As Int 

The 0-based index of the match in the string. 

• Global As Boolean 

Checks whether the "g" modifier is set 

• IgnoreCase As Boolean 

Checks whether the "i" modifier is set 

• InitializePattern (pattern As String) 

Creates a new BANanoRegEx object using the given pattern 

the outer quotes will be removed 

 

see Javascript RegEx reference for the pattern. 

• InitializeString (patternS As String) 

Creates a new BANanoRegEx object using the given string 

 

see Javascript RegEx reference for the pattern. 

• LastIndex As Int 

The lastIndex property specifies the index at which to start the next match. 

• MultiLine As Boolean 

Check whether or not the "m" modifier is set 

• ReplacePattern (s As String, pattern As String, byStr As String) As String 

The replace() method replaces a specified value with another value in a string 

 

you don't need to use BANano.RegEx to initiate it. 

• ReplaceString (s As String, patternS As String, byStr As String) As String 

The replace() method replaces a specified value with another value in a string 

the outer quotes will be removed 

 

you don't need to use BANano.RegEx to initiate it. 

• SearchPattern (s As String, pattern As String) As Int 

The search() method searches a string for a specified value and returns the position of 

the match 

the outer quotes will be removed 

 

you don't need to use BANano.RegEx to initiate it. 

• SearchString (s As String, patternS As String) As Int 

The search() method searches a string for a specified value and returns the position of 

the match 

 

you don't need to use BANano.RegEx to initiate it. 

• Source As String 

Return the text of the RegExp pattern 

https://www.w3schools.com/jsref/jsref_obj_regexp.asp
https://www.w3schools.com/jsref/jsref_obj_regexp.asp


 224 BANano – Essentials 

 

• Test (s As String) As Boolean 

Tests for a match in a string. Returns true or false 

21.26 BANanoRouter 

 

Functions 

• AddRoute (path As String, handlerClass As String, initializeParams As List, 

loadHTML As Boolean) 

Adds a Route to the router. 

 

initializeParams: an array containing all the extra parameters needed to run the 

handlerClass.Initialize method. 

loadHTML: if true, then ./path/index.html will be loaded + a binding to all 

BANanoAutoelements in the class. 

HandlerClass: Must have the following Method(s): 

 
' handling the call (data and/or params can be null!) 

Sub BANano_RouterHandle(url As String, data As Map, params As Map) 

 

End Sub 

 

' (Optional) if you want to do some checks before one leaves the page. 

' Can cancel the page change. 

Sub BANano_RouterLeaving() As Boolean 

 

   Return True (or False if you do not want to leave) 

End Sub 

 

Examples: 

Router.AddRoute("/foo", "FooClass", Null, False) 

- matches specifically "/foo" 

 

Router.AddRoute("/foo/:name", "FooClass", Null, False) 

- matches "/foo/my-name-here" 

 

Router.AddRoute(":page", "FooClass", Null, False) 

- matches "/about-page" 

 

Router.AddRoute("/foo/*", "FooClass", Null, False) 

- matches "/foo/a/b/c" 

 

Router.AddRoute("*", "FooClass", Null, False) 

- matches "/foo/bar/moo" 

 

Router.AddRoute("/foo/:id/?", "FooClass", Null, False) 

- matches "/foo/20/save" and also "/foo/20" 

 

Router.Addroute("/testPage1", "testPage1", Array("Something extra"), 

True) 

- will load ./testPage1/index.html and bind all BANanoAutoElements 

with the variables declared in the testPage1 class. 

• Initialize (rootPath As String, matchAll As Boolean) 

rootPath: the root path of your application. For example, if you are hosting the 

application at https://site.com/my/project you have to specify the following: 

matchAll: default false, meaning that when a match is found the router stops resolving 

other routes. If set true, it will continue searching for other matches 



 225 BANano – Essentials 

 

e.g. Router.AddRoute("/foo/:id/?", "FooClass") matches "/foo/20/save" and also "/foo/20" 

 

NOTE: use the hash string as path for routing. For example /my/app/#/about/team is 

treated as /about/team when entered in the browser's navigation bar. 
Dim Router as BANanoRouter 

Router.Initialize("/my/project", False) 

• Navigate (path As String) 

Navigate does the following: 

1. Checks if there is a match. And if the answer is "yes" then ... 

2. It calls the old page route leaving (if exists). If this returns True (or does not exist) then 

... 

3. It calls the new page route handler. 

4. Updates the internal state of the router. 

• NavigateUpdateUrl (path As String) 

Navigate does the following: 

1. Checks if there is a match. And if the answer is "yes" then ... 

2. It calls the old page route leaving (if exists). If this returns True (or does not exist) then 

... 

3. It calls the new page route handler. 

4. Updates the internal state of the router and the browser url. 

• NotFound (handlerClass As String, initializeParams As List) 

A special handler for the cases where a no match is found. 

 

initializeParams: an array containing all the extra parameters needed to run the 

handlerClass.Initialize method. 

• RemoveRoute (path As String) 

To remove a route call the RemoveRoute method by passing the path of the route. 

• Start (initialPath As String) 

Starts the router, going to your initial Path 

  



 226 BANano – Essentials 

 

21.27 BANanoSQL 

 

Events 

• SQLExecuteError (Tag As String, Reason As String) 

• SQLExecuteResult (Tag As String, Result As List) 

• SQLOpened() 

Functions 

• Execute (Query As String, Args As List, tag As String) 

Will return the result in the SQLResult(Tag as String, Result as List) event. The tag can be 

used to see where it is coming from. 

 

Result returns a list of maps containing the requested data in case of a SELECT 

 

if an error occurs, SQLExecuteError() will be raised with Tag you passed 

• ExecuteCallback (Query As String, Args As List, module As Object, 

methodName As String) 

Will return the result in the callback. MUST BE defined as: 

 
functionName(success As Boolean, Result as List, Reason as String) 

 

Result returns a list of maps containing the requested data in case of a SELECT 

• ExecuteWait (Query As String, Args As List) As List 

Returns the result as a List of maps containing the requested data in case of a SELECT 

 

Note: Do not use a BANano.AWait around this method as it already does it internally 

and needs some other settings before being able to run. 

• LastInserted (tableName As String, fieldName As String) As Object 

Returns the last auto incremented value after an insert 

• NextInserted (tableName As String, fieldName As String) As Object 

Returns the next auto incremented value that will be used 

• Open (eventName As String, databaseName As String) 

Opens the database and creates it if it does not exist. Uses IndexedDB so everything 

works with promises. 

 

When the database is created and open the event SQLOpened() will be raised 

 

databaseName cannot be a variable and must be a literal String 

 

if an error occurs, SQLExecuteError() will be raised with Tag="CREATEDB" 

• OpenWait (eventName As String, databaseName As String) As Object 

Opens the database and creates it if it does not exist. Uses IndexedDB so everything 

works with promises. 

 

databaseName cannot be a variable and must be a literal String 

 

Note: Do not use a BANano.AWait around this method as it already does it internally 

and needs some other settings before being able to run. 



 227 BANano – Essentials 

 

21.28 BANanoScreen 

 

Functions 

• AvailHeight As Double 

Returns the height of the screen (excluding the Windows Taskbar) 

• AvailWidth As Double 

Returns the width of the screen (excluding the Windows Taskbar) 

• ColorDepth As Double 

Returns the bit depth of the color palette for displaying images 

• GetField (field As String) As BANanoObject 

Gets a field value 

• Height As Double 

Returns the total height of the screen 

• PixelDepth As Double 

Returns the color resolution (in bits per pixel) of the screen 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

• Width As Double 

Returns the total width of the screen 

  



 228 BANano – Essentials 

 

21.29 BANanoTranspilerOptions 

 

Functions 

• ActivateFirebaseMessaging (messageSenderId As String, apiKey As String, 

projectId As String, appId As String) 

Activates the Firebase Messaging. 

 

Setup and the value of the parameters can be found here|https://www.itwonders-

web.com/blog/push-notification-using-firebase-demo-tutorial 

 

A file called firebase-messaging-sw.js will be created. It MUST be copied to the root of 

your domain! 

 

Add the following: 

 
BANano.TranspilerOptions.ActivateFirebaseMessaging("317703310xxx", 

"AIzaSyDC16GI7KqNo0vLbHF-xxxxxxxxxxxxx-EDE8", 

"onetwoxxxx","1:317703310964:web:xxxxxxxxxxxxxxxx") 

 

Sending a message can be done by sending a POST message to the url: 

 
https://fcm.googleapis.com/fcm/send 

 

With Headers: 

 
"Content-Type": "application/json","Authorization": "key=Server_key" 

 

Server_Key: get from the Firebase Console (Project Settings - Cloud Messaging) 

 

Body: 

 
{ 

   "to": "cXpswYrkmcnrwk3rqolMuR:APA91bE8piwYq-

NTezNUhpj3pIfgX0_vgddqjw8dKkLLOhCYCq1t3-B_9r_1lD5LNo0OA1u...", 

   "notification": { 

      "title": "Alain", 

      "body": "Alain and some more", 

      "icon": "./assets/onetwo.png", 

      "content_available": true, 

      "priority": "high", 

      "requireInteraction": true, 

      "image": "./assets/scanner.jpg", 

      "vibration": [300, 100, 400], 

   } 

} 

 

to: can be retrieved with the BANano.GetFirebaseToken method after the user gave 

permission. 

• DoNotDeleteFileOnCompilation (fullPath As String) 

Prevents the Transpiler from deleting this file. Useful e.g. for assets that are not in the 

/Files folder. 



 229 BANano – Essentials 

 

• DoNotDeleteFolderOnCompilation (fullPath As String) 

Prevents the Transpiler from deleting this folder. Useful e.g. for assets that are not in the 

/Files folder. 

• ExcludePWACachingUrlContaining (str As String) 

Url containing the given string will not be cached by the PWA Service Worker. Case 

sensitive. 

• GZipGeneratedWebsite (minSizeKB As Double) 

Will GZip your html/css/js/json files on compilation. Set a minimum filesize so small files 

are not compressed 

 

This is ONLY useful if you use NGinx with gzip_static set to 'on' 

• IgnoreB4JLibrary (libName As String) 

A B4J library the BANano Transpiler should ignore. 

 

By default, the following are ignored: 

 
BANano 

BANanoServer 

jCore 

jFx 

   json 

   jMQTT 

   jServer 

   JavaObject 

   ABJJWT 

• RedirectOutput (dir As String, fileName As String) 

Redirects the logs to a file. Must be set in AppStart 

• SetFireReadyWhenReadyStateComplete (bool As Boolean) 

Raises the Ready state only when the loading state is 'Complete'. Default = True 

• SetIgnoreAutoID (ignore As Boolean) 

Ignore Transpiling the AutoID property of a CustomView to a random ID/Name. 

• SetPWAStartUrl (StartURL As String) 

Sets the Start Url in the manifest.json file for a PWA. Default is HTML_NAME 

 

e.g. PWA/index.html 

• SetSessionMaxInactiveInterval (sessionMaxInactiveInterval As Int) 

Sends a heartbeat. Only applicable if a BANanoServer is used. 

 

Should be the same as the BANanoServer.SessionMaxInactiveInterval 

• SetStaticFolder (staticFolderName As String) 

Sets the static folder name. is by default the appShortVersion. Can only be set in 

AppStart, after the initialize. 

• UseServiceWorkerWithUpdateMessage (bool As Boolean, UpdateColor As String, 

UpdateTitle As String, UpdateMessage As String) 

Use a service worker where an update toast is showed if an update is available. 

The user can then click the toast to do the update. 

Properties 

• Author As String [write only] 

Must be set before Build(). Only applicable for .b4xlibs. 



 230 BANano – Essentials 

 

• DisableShortenVariableNames As Boolean [write only] 

Disables the shorting of the variable names in release mode 

• EnableLiveCodeSwapping As Boolean [write only] 

Enable Live Code Swapping and watch live changes made in the B4J source code. 

On Save, the changed B4J code is Transpiled again and reloaded by the browser. 

 

Default = true 

• ExternalTestConnectionServer As String [write only] 

By default the connection to the internet is tested by checking if donotdelete.gif can be 

retrieved 

from the assets folder where the app is hosted. 

 

However, if you do not put it on a host (e.g. just by opening the .html file from disk), 

You can upload the donotdelete.gif to some host on the internet to test for an internet 

connection. 

• IDEComment As String [write only] 

Must be set before Build(). Only applicable for .b4xlibs. 

Adds a comment in the libs manifest 

• IgnoreWarningsOldBrowsers As Boolean [write only] 

If True the transpiler will not show warnings for older browsers 

• MergeAllCSSFiles As Boolean [write only] 

Must be set before Build(). Only used when in Release mode. 

• MergeAllJavascriptFiles As Boolean [write only] 

Must be set before Build(). Only used when in Release mode. 

• MinifyOnline As Boolean [write only] DEPRECIATED (Does not work anymore) 

Using the API of: 

 

https://javascript-minifier.com, the generated Javascript file will be minified 

https://cssminifier.com, the CSS files will be minified 

• RemoveDeadCode As Boolean [write only] 

Only works in Build 

 

The transpiler does not GENERATE dead code (never used). It does NOT remove the B4J 

code! 

 

Use ShowWarningDeadCode beforehand to check if the transpiler is correct. 

Methods with a _ in their name are always considered to be needed. 

• ShowLogPosition As Boolean [write only] 

Shows the position in the B4J code of the log in DebugMode 

• ShowWarningDeadCode As Boolean [write only] 

Only works in Build 

 

Shows a warning in the log if the transpiler suspects some code is dead (never used). 

This is handy, especially in the final stage of development to remove code (or comment 

out) that is never used. 

 

Methods with a _ in their name are always considered to be needed. 

 



 231 BANano – Essentials 

 

You can then use the RemoveDeadCode property to prevent GENERATING dead 

javascript code. 

• UseServiceWorker As Boolean [write only] 

USE UseServiceWorkerWithUpdateMessage INSTEAD Can ONLY be used in AppStart(). 

Set this param to true if you do want to use a ServiceWorker 

Default false 

  



 232 BANano – Essentials 

 

21.30 BANanoURL 

 

Functions 

• CreateObjectUrl (object As Object) As BANanoURL 

The URL.createObjectURL() static method creates a DOMString containing a URL 

representing the object given in the parameter. 

The URL lifetime is tied to the document in the window on which it was created. The new 

object URL represents the specified File object or Blob object. 

To release an object URL, call revokeObjectURL(). 

• GetField (field As String) As BANanoObject 

Gets a field value 

• GetHash As String 

returns a String containing a '#' followed by the fragment identifier of the URL. 

The fragment is not percent-decoded. If the URL does not have a fragment identifier, this 

property contains an empty string - "". 

• GetHost As String 

The host property of the URL interface is a String containing the host, that is the 

hostname, and then, 

if the port of the URL is nonempty, a ':', and the port of the URL. 

• GetHostname As String 

Gets the hostname property of the URL interface is a String containing the domain of the 

URL. 

• GetHref As String 

Gets the href property of the URL interface is a String containing the whole URL. 

• GetPassword As String 

Gets the password property of the URL interface is a String containing the password 

specified before the domain name. 

If it is set without first setting the username property, it silently fails. 

• GetPathname As String 

Gets the pathname property of the URL interface is a String containing an initial '/' 

followed by the path of the URL (or the empty string if there is no path). 

• GetPort As String 

Gets the port property of the URL interface is a String containing the port number of the 

URL. If the URL does not contain an explicit port number, it will be set to ''. 

• GetProtocol As String 

Gets the protocol property of the URL interface is a String representing the protocol 

scheme of the URL, including the final ':'. 

• GetSearch As String 

Get the search property of the URL interface is a search string, also called a query string, 

that is a String containing a '?' followed by the parameters of the URL. 

Modern browsers provide the URL.searchParams property to make it easy to parse out 

the parameters from the querystring. 

• GetUsername As String 

Gets the username property of the URL interface is a String containing the username 

specified before the domain name. 

• Initialize (url As String, base As String) 

returns a newly created URL object representing the URL defined by the parameters. * 



 233 BANano – Essentials 

 

• Result As Object 

Gets the result 

• RevokeObjectURL (url As BANanoURL) 

The URL.revokeObjectURL() static method releases an existing object URL which was 

previously created by calling URL.createObjectURL(). 

Call this method when you've finished using an object URL to let the browser know not 

to keep the reference to the file any longer. 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• SetField (field As String, value As Object) 

Sets a field value 

• SetHash (hash As String) 

set a '#' followed by the fragment identifier of the URL 

• SetHost (host As String) 

sets the host property, a String containing the host, that is the hostname, and then, 

if the port of the URL is nonempty, a ':', and the port of the URL. 

• SetHostname (hostname As String) 

Sets the hostname property of the URL interface is a String containing the domain of the 

URL. 

• SetHref (href As String) 

Sets the href property of the URL interface is a String containing the whole URL. 

• SetPassword (password As String) 

Sets the password property of the URL interface is a String containing the password 

specified before the domain name. 

If it is set without first setting the username property, it silently fails. 

• SetPathname (pathname As String) 

Sets the pathname property of the URL interface is a String containing an initial '/' 

followed by the path of the URL (or the empty string if there is no path). 

• SetPort (port As String) 

Sets the port property of the URL interface is a String containing the port number of the 

URL. If the URL does not contain an explicit port number, it will be set to ''. 

• SetProtocol (protocol As String) 

Sets the protocol property of the URL interface is a String representing the protocol 

scheme of the URL, including the final ':'. 

• SetSearch (search As String) 

Set the search property of the URL interface is a search string, also called a query string, 



 234 BANano – Essentials 

 

that is a String containing a '?' followed by the parameters of the URL. 

Modern browsers provide the URL.searchParams property to make it easy to parse out 

the parameters from the querystring. 

• SetUsername (username As String) 

Sets the username property of the URL interface is a String containing the username 

specified before the domain name. 

• ToJSON As String 

The toJSON() method of the URL interface returns a String containing a serialized 

version of the URL, although in practice it seems to have the same effect as 

URL.toString(). 

• ToString As String 

The URL.toString() stringifier method returns a String containing the whole URL. It is 

effectively a read-only version of URL.href. 

Properties 

• Origin As String [read only] 

The origin read-only property of the URL interface returns a String containing the 

Unicode serialization 

of the origin of the represented URL. The exact structure varies depending on the type of 

URL 

• SearchParams As Map [read only] 

The searchParams read-only property of the URL interface returns a URLSearchParams 

object allowing access to the GET decoded query arguments contained in the URL. 

  



 235 BANano – Essentials 

 

21.31 BANanoWebSocket 

 

Events 

• OnClose (event As BANanoEvent) 

• OnConnecting (event As BANanoEvent) 

• OnError (event As BANanoEvent) 

• OnMessage (event As BANanoEvent) 

• OnOpen (event As BANanoEvent) 

• OnServerReady() 

• WebSocket_Connected() 

• WebSocket_Disconnected (event As BANanoEvent) 

Fields 

• CLOSED As Int 

• CLOSING As Int 

• CONNECTING As Int 

• OPEN As Int 

Functions 

• B4JSend (methodName As String, data As Map) 

Same as send, but for a B4J Webserver. Is send as an event 

 

The methodName MUST end with _BAN and have only one parameter: Params as Map! 

 

e.g. myServerFunc_BAN(Params as Map) 

 
ws.B4JSend("myServerFunc_BAN", CreateMap("Message": "My message")) 

• Close 

Closes the WebSocket connection or connection attempt, if any. If the connection is 

already CLOSED, this method does nothing. 

• CloseReason (code As Int, Reason As String) 

Closes the WebSocket connection or connection attempt, if any. If the connection is 

already CLOSED, this method does nothing. 

• GetField (field As String) As BANanoObject 

Gets a field value 

• Initialize (Url As String) 

If using BANanoServer. Raises classic B4J WebSocket_Connected and 

WebSocket_Disconnected events. 

 

Do NOT use if you do not use a BANanoServer! Use InitializeExtended instead. 

 

Creates a new WebSocket using the url (ws:// or wss://). 

• InitializeExtended (eventName As String, Url As String, protocols As String, 

isReconnectingWebSocket As Boolean) 

Extended version that raises events _OnOpen, _OnClose, _OnMessage, _OnError, 

_OnConnecting and _OnServerReady (if using BANanoServer) 

 



 236 BANano – Essentials 

 

Creates a new WebSocket using the url (ws:// or wss://). 

 

protocols: leave empty ("") if not used. 

isReconnectingWebSocket: if true, then a special WebSocket will be used which tries to 

reconnect if the connection is lost 

• IsReconnected As Boolean 

In case of a Reconnecting Websocket, you can check if this was a reconnected session 

• Result As Object 

Gets the result 

• RunFunction (Function As String, Args As List) 

Runs a B4J function. Pass null to Args if is not needed. 

• RunFunctionWithResult (Function As String, Args As List) As BANanoPromise 

Similar to RunFunction. Returns a BANanoPromise with the result. 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• Send (data As Object) 

Enqueues the specified data to be transmitted to the server over the WebSocket 

connection, increasing the value of bufferedAmount 

by the number of bytes needed to contain the data. If the data can't be sent (for 

example, because it needs to be buffered 

but the buffer is full), the socket is closed automatically. 

• SetField (field As String, value As Object) 

Sets a field value 

Properties 

• BinaryType As String 

CAN NOT BE USED WITH A RECONNECTING WEBSOCKET! 

 

Get/Set the type of binary data being transmitted by the connection. 

 

Possible values "blob" or "arraybuffer" 

• BufferedAmount As Long [read only] 

CAN NOT BE USED WITH A RECONNECTING WEBSOCKET! 

 

Read-only property returns the number of bytes of data that have been queued using 

calls to send() but not yet transmitted to the network. 



 237 BANano – Essentials 

 

This value resets to zero once all queued data has been sent. This value does not reset to 

zero when the connection is closed: 

if you keep calling send(), this will continue to climb. 

• Extensions As String [read only] 

CAN NOT BE USED WITH A RECONNECTING WEBSOCKET! 

 

Read-only property returns the extensions selected by the server. 

This is currently only the empty string or a list of extensions as negotiated by the 

connection. 

• IsSupported As Boolean [read only] 

Check if the browser does support WebSockets 

• Protocol As String [read only] 

Read-only property returns the name of the sub-protocol the server selected: 

this will be one of the strings specified in the protocols parameter when creating the 

WebSocket object. 

• ReadyState As Int [read only] 

Read-only property returns the current state of the WebSocket connection. 

See the constants on this object. 

• ReconnectAttempts As Int [read only] 

The number of attempted reconnects since starting, or the last successful connection. 

Read only. 

Only for a Reconnecting WebSocket 

• Url As String [read only] 

Read-only property returns the absolute URL of the WebSocket as resolved by the 

constructor. 

 

 

 

  



 238 BANano – Essentials 

 

21.32 BANanoWindow 

 

Functions 

• AddEventListener (eventName As String, callbackMethod As Object, 

useCapture As Boolean) 

eventName: A String that specifies the name of the event. (Do not use the 'on' 

prefix!) 

callbackMethod: Specifies the function to run when the event occurs. Use 

BANano.CallBackMethod() 

useCapture: A Boolean value that specifies whether the event should be executed in 

the capturing or in the bubbling phase. 

 

true - The event handler is executed in the capturing phase 

false - The event handler is executed in the bubbling phase 

• AddEventListenerOpen (eventName As String, params As Object) 

All the code between AddEventListenerOpen and CloseEventListener is transpiled 

between those lines 

 

eventName: A String that specifies the name of the event. (Do not use the 'on' 

prefix!) 

 

An AddEventListenerOpen MUST always be closed by an CloseEventListener! 

 

params: params it has to pass in the function() method 

 
req.AddEventListenerOpen("onreadystatechange", aEvt) 

... 

req.CloseEventListener 

 

transpiles to: 

 
req.onreadystatechange = function(aEvt) { 

... 

}; 

• AddEventListenerOpenAsync (eventName As String, params As Object) 

All the code between AddEventListenerOpenAsync and CloseEventListener is 

transpiled between those lines 

 

eventName: A String that specifies the name of the event. (Do not use the 'on' 

prefix!) 

 

An AddEventListenerOpenAsync MUST always be closed by an CloseEventListener! 

 

params: params it has to pass in the function() method 

 
req.AddEventListenerOpenAsync("onreadystatechange", aEvt) 

... 

req.CloseEventListener 

 

transpiles to: 

 



 239 BANano – Essentials 

 
req.onreadystatechange = async function(aEvt) { 

... 

}; 

• Alert (message As String) 

Displays an alert box with a message and an OK button 

 

Same as BANano.Msgbox() or BANano.Alert() 

• Atob (base64String As String) As String 

DEPRECIATED: Use BANano.Atob() instead 

 

Decodes a base-64 encoded string 

• Blur 

Removes focus from the current window 

• Btoa (string As String) As String 

DEPRECIATED: Use BANano.Btoa() instead 

 

Encodes a string in base-64 

• CancelAnimationFrame (requestID As Long) 

cancels an animation frame request previously scheduled through a call to 

window.requestAnimationFrame(). 

• ClearInterval (timerVar As Object) 

Clears a timer set with setInterval() 

• ClearTimeout (timerVar As Object) 

Clears a timer set with setTimeout() 

• Close 

Closes the current window 

• Closed As Boolean 

Returns a Boolean value indicating whether a window has been closed or not 

• CloseEventListener 

Closes an AddEventListenerOpen or AddEventListenerOpenAsync method 

• Confirm (message As String) As Boolean 

Displays a dialog box with a message and an OK and a Cancel button 

• Focus 

Sets focus to the current window 

• FrameElement As BANanoObject 

Returns the iframe element in which the current window is inserted 

• Frames As BANanoObject() 

Returns all ifram> elements in the current window 

• GetField (field As String) As BANanoObject 

Gets a field value 

• GetName As String 

Sets or returns the name of a window 

• InnerHeight As Double 

Returns the height of the window's content area (viewport) including scrollbars 

• InnerWidth As Double 

Returns the width of a window's content area (viewport) including scrollbars 

• Length As Int 

Returns the number of iframe elements in the current window 



 240 BANano – Essentials 

 

• MoveBy (x As Double, y As Double) 

Moves a window relative to its current position 

• MoveTo (x As Double, y As Double) 

Moves a window to the specified position 

• Open (URL As String, name As String, specs As String, replace As Boolean) 

Opens a new browser window 

 

For more info: https://www.w3schools.com/jsref/met_win_open.asp 

• Opener As BANanoWindow 

Returns a reference to the window that created the window 

• OuterHeight As Double 

Returns the height of the browser window, including toolbars/scrollbars 

• OuterWidth As Double 

Returns the width of the browser window, including toolbars/scrollbars 

• PageXOffset As Double 

Returns the pixels the current document has been scrolled (horizontally) from the 

upper left corner of the window 

• PageYOffset As Double 

Returns the pixels the current document has been scrolled (vertically) from the upper 

left corner of the window 

• Parent As BANanoWindow 

Returns the parent window of the current window 

• Print 

Prints the content of the current window 

• Prompt (message As String, defaultValue As String) As String 

Displays a dialog box that prompts the visitor for input 

• RemoveEventListener (eventName As String, callbackMethod As Object, 

useCapture As Boolean) 

Removes event handlers that have been attached with the addEventListener() 

method 

 

callbackMethod: Specifies the function to run when the event occurs. Use 

BANano.CallBackMethod() 

useCapture: A Boolean value that specifies the event phase to remove the event 

handler from. 

 

true - Removes the event handler from the capturing phase 

false - Removes the event handler from the bubbling phase 

• RequestAnimationFrame (module As Object, methodName As String) As Long 

The window.requestAnimationFrame() method tells the browser that you wish to 

perform an animation and requests 

that the browser call a specified function to update an animation before the next 

repaint. 

 

The method to call when it's time to update your animation for the next repaint. 

MUST be defined as: 

 

funcName(timeStamp As double) 



 241 BANano – Essentials 

 

• ResizeBy (width As Double, height As Double) 

Resizes the window by the specified pixels 

• ResizeTo (width As Double, height As Double) 

Resizes the window to the specified width and height 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• ScreenLeft As Double 

Returns the horizontal coordinate of the window relative to the screen 

• ScreenTop As Double 

Returns the vertical coordinate of the window relative to the screen 

• ScreenX As Double 

Returns the horizontal coordinate of the window relative to the screen 

• ScreenY As Double 

Returns the vertical coordinate of the window relative to the screen 

• ScrollBy (x As Double, y As Double) 

Scrolls the document by the specified number of pixels 

• ScrollTo (x As Double, y As Double) 

Scrolls the document to the specified coordinates 

• Self As BANanoWindow 

Returns the current window 

• SetField (field As String, value As Object) 

Sets a field value 

• SetInterval (callback As Object, ms As Int) As Object 

Calls a function or evaluates an expression at specified intervals (in milliseconds) 

• SetName (name As String) 

Sets or returns the name of a window 

• SetTimeout (callback As Object, ms As Int) As Object 

Calls a function or evaluates an expression after a specified number of milliseconds 

• Stop 

Stops the window from loading 

• Top As BANanoWindow 

Returns the topmost browser window 

  



 242 BANano – Essentials 

 

21.33 BANanoXMLHttpRequest 

 

Note: Use the more modern BANanoFetch instead. 

 

Fields 

• DONE As Int 

• HEADERS_RECEIVED As Int 

• LOADING As Int 

• OPENED As Int 

• UNSENT As Int 

Functions 

• Abort 

Abort the call 

• AddEventListener (eventName As String, callbackMethod As Object, 

useCapture As Boolean) 

eventName: A String that specifies the name of the event. (Do not use the 'on' prefix!) 

callbackMethod: Specifies the function to run when the event occurs. Use 

BANano.CallBackMethod() 

useCapture: A Boolean value that specifies whether the event should be executed in the 

capturing or in the bubbling phase. 

 

true - The event handler is executed in the capturing phase 

false - The event handler is executed in the bubbling phase 

• AddEventListenerOpen (eventName As String, params As Object) 

All the code between AddEventListenerOpen and CloseEventListener is transpiled 

between those lines 

 

eventName: A String that specifies the name of the event. (Do not use the 'on' prefix!) 

 

An AddEventListenerOpen MUST always be closed by an CloseEventListener! 

 

params: params it has to pass in the function() method 

 
req.AddEventListenerOpen("onreadystatechange", aEvt) 

... 

req.CloseEventListener 

 

transpiles to: 

 
req.onreadystatechange = function(aEvt) { 

... 

}; 

• AddEventListenerOpenAsync (eventName As String, params As Object) 

All the code between AddEventListenerOpenAsync and CloseEventListener is transpiled 

between those lines 

 

eventName: A String that specifies the name of the event. (Do not use the 'on' prefix!) 

 



 243 BANano – Essentials 

 

An AddEventListenerOpenAsync MUST always be closed by an CloseEventListener! 

 

params: params it has to pass in the function() method 

 

 
req.AddEventListenerOpenAsync("onreadystatechange", aEvt) 

... 

req.CloseEventListener 

 

transpiles to: 

 
req.onreadystatechange = async function(aEvt) { 

... 

}; 

• CloseEventListener 

Closes an AddEventListenerOpen or AddEventListenerOpenAsync method 

• GetAllResponseHeaders As String 

Returns a string containing all header value pairs from the response. 

• GetField (field As String) As BANanoObject 

Gets a field value 

• GetResponseHeader (header As String) As String 

Returns the value for the specified header. Returns null if the headers do not contain a 

value for header. 

• GetResponseType As String 

Determines the type returned by response: 

 
'' (default) Same as 'text' 

'text' String 

'arraybuffer' ArrayBuffer 

'blob' Blob 

'document' Document 

'json' Object 

• GetTimeout As Double 

Gets the timeout value 

• GetWithCredentials As Boolean 

Gets if credentials are used 

• Initialize 

Creates a new XMLHttpRequest object. 

• Open (method As String, url As String) 

Specifies the url to read from and the http method ('GET', 'POST', 'PUT', 'DELETE', etc) to 

use when reading the url. 

• Open2 (method As String, url As String, async As Boolean, user As String, 

password As String) 

Specifies the url to read from and the http method ('GET', 'POST', 'PUT', 'DELETE', etc) to 

use when reading the url. 

If async is true, the request will be asynchronous and you should provide an onload 

callback to be called when the read completes. 

In general, it is best to use the asynchronous request so the browser remains responsive 

while the request is in progress. 

• RemoveEventListener (eventName As String, callbackMethod As Object, 

useCapture As Boolean) 

Removes event handlers that have been attached with the addEventListener() method 



 244 BANano – Essentials 

 

 

callbackMethod: Specifies the function to run when the event occurs. Use 

BANano.CallBackMethod() 

useCapture: A Boolean value that specifies the event phase to remove the event handler 

from. 

 

true - Removes the event handler from the capturing phase 

false - Removes the event handler from the bubbling phase 

• Result As Object 

Gets the result 

• RunMethod (methodName As String, params As Object) As BANanoObject 

Runs a method on the JavaScript object. 

 

NOTE: the outer Array will be removed in the javascript. 

So if you want to pass an array, you have to add an extra array. 

 

e.g. if you want to pass "[0,0], "Alain", you actually have to pass [[0,0], "Alain"] 

 
RunMethod("myMethod", Array(Array(0,0), "Alain")) 

 

If only one, non-Array param is passed, you can ignore this. 

 

e.g. this is valid 

 
RunMethod("myMethod", "Alain") 

• Send 

Sends the request 

• Send2 (obj As Object) 

Sends the request, The param obj can be a Document, Formdata, Blob, ArrayBuffer or a 

String 

• SetField (field As String, value As Object) 

Sets a field value 

• SetRequestHeader (header As String, value As String) 

sets the value of an HTTP request header. When using setRequestHeader(), you must call 

it after calling open(), but before calling send(). 

If this method is called several times with the same header, the values are merged into 

one single request header. 

• SetResponseType (rspType As String) 

Determines the type returned by response. Must be set to one of the following: 

 
'' (default) Same as 'text' 

'text' String 

'arraybuffer' ArrayBuffer 

'blob' Blob 

'document' Document 

'json' Object 

 

Must be set before readyState reaches LOADING. 

• SetTimeout (timeoutValue As Double) 

Sets the timeout value 



 245 BANano – Essentials 

 

• SetWithCredentials (withCred As Boolean) 

Sets if credentials have to be used 

Properties 

• OverrideMimeType As String [write only] 

specifies a MIME type other than the one provided by the server to be used instead when 

interpreting the data being transferred in a request. 

This may be used, for example, to force a stream to be treated and parsed as "text/xml", 

even if the server does not report it as such. 

• ReadyState As Int [read only] 

The current state of this. Will be one of UNSENT, OPENED, HEADERS_RECEIVED, 

LOADING, or DONE (see consts). 

• Response As Object [read only] 

Returns the response from the server in the type specified by responseType. Only valid 

after the load event fires. 

• ResponseText As String [read only] 

Returns the response from the server as a string. Only valid after the load event fires and 

if responseType is set to '' (the default) or 'text'. 

• ResponseXML As Object [read only] 

returns a Document object 

• Status As Int [read only] 

The http status code for the request. See statusText for a description of the code. 

• StatusText As String [read only] 

A description of the status return code. 

• Upload As BANanoObject [read only] 

Returns a BANanoObject associated with this XMLHttpRequest that can be used to track 

the upload status of the send() call. 

 


